
<�2.75

75'4 5�/#07#.
7/�������<�:����

n any
nt is

patent

ion set
ment.

liability

kes no

 unless
 ZiLOG

into the
ns for
© 1999 by ZiLOG, Inc. All rights reserved. No part of this document may be copied or reproduced i
form or by any means without the prior written consent of ZiLOG, Inc. The information in this docume
subject to change without notice. Devices sold by ZiLOG, Inc. are covered by warranty and
indemnification provisions appearing in ZiLOG, Inc. Terms and Conditions of Sale only.

ZiLOG, Inc. makes no warranty, express, statutory, implied or by description, regarding the informat
forth herein or regarding the freedom of the described devices from intellectual property infringe
ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose.

The software described herein is provided on an as-is basis and without warranty. ZiLOG accepts no
for incidental or consequential damages arising from use of the software.

ZiLOG, Inc. shall not be responsible for any errors that may appear in this document. ZiLOG, Inc. ma
commitment to update or keep current the information contained in this document.

ZiLOG's products are not authorized for use as critical components in life support devices or systems
a specific written agreement pertaining to such intended use is executed between the customer and
prior to use. Life support devices or systems are those which are intended for surgical implantation
body, or which sustains life whose failure to perform, when properly used in accordance with instructio
use provided in the labeling, can be reasonably expected to result in significant injury to the user.

=L/2*, Inc.
910 East Hamilton Ave., Suite 110
Campbell, CA 95008
Telephone: (408) 558-8500
FAX: (408) 558-8300
Internet: http://www.zilog.com

<�2.7575'4 5�/#07#.

24'(#%'
The following conventions have been adopted to provide clarity and ease of use:

� Courier Font For Executables

Commands, variables, icon names, entry field names, selection buttons, code examples, and other
executable items are distinguished by the use of the Courier font. Where the use of the font is not
possible, like in the Index, the name of the entity is capitalized. For example, a procedure may contain
an instruction which appears as: Click on File. However, an Index entry would appear as (+.'.

� Grouping of Actions Within A Procedure Step

Actions in a procedure step are all performed on the same window or dialog box. Actions performed on
different windows or dialog boxes appear in separate steps.

� Sequencing Words Within A Procedure Step

When an item in a procedure contains a series of actions, the second action is preceded by the word WKHQ,
and the third and subsequent actions are preceded by the word DQG. For example: Click on View, then
Memory, and Z8 Code Memory.

� Unavailable menu items are presented in gray.
7/�������<�:���� X

<�2.75�7UGT U�/CPWCN
2TGHCEG =L/2*
ADDITIONAL SOURCES OF INFORMATION

In addition to this manual, you should have access to and be familiar with the following documentation:

� =��0LFURFRQWUROOHUV�8VHU·V�0DQXDO, UM95Z800103

� Data Sheet for each product with which you work.
XK 7/�������<�:����

<�2.75�75'4 5�/#07#.

6#$.'�1(�%106'065

%JCRVGT�6KVNG�CPF�5WDUGEVKQPU 2CIG
Chapter 1. Address Space
Introduction ... 1-1

Register File Space .. 1-1

General-Purpose Registers .. 1-5

Working Register Groups ... 1-6

Precautions .. 1-8

Control and Peripheral Registers ... 1-10

Control Registers ... 1-10

Peripheral Registers .. 1-10

Program Memory ... 1-11

Stack ... 1-13

Chapter 2. Addressing Modes
Addressing Modes .. 2-1

Register Addressing (R) ... 2-2

Indirect Register Addressing (IR) ... 2-3

Indexed Addressing (X) .. 2-5

Direct Addressing (DA) ... 2-7

Relative Addressing (RA) ... 2-8

Immediate Data Addressing (IM) .. 2-9
7/�������<�:���� XKK

<�2.757UGT U�/CPWCN
6CDNG�QH�%QPVGPVU =L/2*

%JCRVGT�6KVNG�CPF�5WDUGEVKQPU 2CIG
Chapter 3. Instruction Set
Functional Summary ... 3-1

Processor Flags .. 3-5

Condition Codes ... 3-7

Notation And Binary Encoding .. 3-10

Assembly Language Syntax .. 3-12

Z8Plus Instruction Summary .. 3-12

Opcode Map .. 3-18

Instruction Description and Formats ... 3-19

ADC–Add with Carry .. 3-20

ADC–Add with Carry .. 3-22

ADD–Add ... 3-23

AND–Logical AND ... 3-25

CALL–Call Procedure .. 3-27

CCF–Complement Carry Flag ... 3-29

CLR–Clear ... 3-30

COM–Complement .. 3-31

CP–Compare ... 3-32

DA–Decimal Adjust .. 3-34

DEC–Decrement .. 3-37

DECW–Decrement Word ... 3-38

DI–Disable Interrupts ... 3-39

DJNZ–Decrement And Jump If Non-zero .. 3-40

EI–Enable Interrupts .. 3-42

HALT–Halt ... 3-43

INC–Increment ... 3-44

INCW–Increment Word .. 3-46

IRET–Interrupt Return .. 3-47

JP–Jump .. 3-48
XKKK 7/�������<�:����

<�2.757UGT U�/CPWCN
=L/2* 6CDNG�QH�%QPVGPVU

%JCRVGT�6KVNG�CPF�5WDUGEVKQP 2CIG
JR–Jump Relative .. 3-50

LD–Load .. 3-51

LDC–Load Constant .. 3-55

LDCI–Load Constant Auto Increment .. 3-57

NOP–No Operation .. 3-59

OR–Logical OR .. 3-60

POP–Pop ... 3-62

PUSH–Push ... 3-63

RCF–Reset Carry Flag .. 3-64

RET–Return ... 3-65

RL–Rotate Left ... 3-66

RLC–Rotate Left Through Carry .. 3-68

RLC–Rotate Left Through Carry .. 3-69

RR–Rotate Right .. 3-70

RRC–Rotate Right Through Carry ... 3-72

RRC–Rotate Right Through Carry ... 3-73

SBC–Subtract with Carry ... 3-74

SCF–Set Carry Flag ... 3-76

SRA–Shift Right Arithmetic .. 3-77

SRP–Set Register Pointer ... 3-79

STOP–Stop .. 3-81

SUB–Subtract .. 3-82

SWAP–Swap Nibbles .. 3-84

TCM–Test Complement Under Mask ... 3-85

TM–Test Under Mask .. 3-87

WDT–Watch-Dog Timer ... 3-89

XOR–Logical Exclusive OR ... 3-90
7/�������<�:���� KZ

<�2.757UGT U�/CPWCN
6CDNG�QH�%QPVGPVU =L/2*

%JCRVGT�6KVNG�CPF�5WDUGEVKQPU 2CIG
Chapter 4. Interrupts
Introduction ... 4-1

Interrupt Sources .. 4-3

External Interrupt Sources ... 4-3

Internal Interrupt Sources .. 4-4

Interrupt Request (IREQ) Register Logic And Timing .. 4-4

Interrupt Mask Register (IMASK) Initialization ... 4-5

Interrupt Request (IREQ) Register Initialization ... 4-7

IREQ Software Interrupt Generation .. 4-9

Vectored Processing .. 4-9

Nesting of Vectored Interrupts ... 4-11

Polled Processing ... 4-12

Reset Conditions .. 4-12

Appendix A. Accessing the ZBBS/Internet
Bulletin Board Information

How to Access the ZBBS

ZiLOG On The Internet

Problem/Suggestion Report Form

Index
Z 7/�������<�:����

<�2.75�75'4 5�/#07#.

.+56�1(�(+)74'5

%JCRVGT�6KVNG�CPF�5WDUGEVKQPU 2CIG
Chapter 1. Address Space
Figure 1-1. Complete Register File RAM Space . 1-2
Figure 1-2. 16-Bit Register Addressing . 1-5
Figure 1-3. Accessing Individual Bits (Example) . 1-5
Figure 1-4. Working Register Addressing (Example) . 1-7
Figure 1-5. Register Pointer . 1-8
Figure 1-6. Program Memory Map . 1-12
Figure 1-7. Stack Pointer . 1-13
Figure 1-8. Stack Operations . 1-14

Chapter 2. Addressing Modes
Figure 2-1. 8-Bit Register Addressing . 2-2
Figure 2-2. 4-Bit Register Addressing . 2-3
Figure 2-3. Indirect Addressing of Register File Memory . 2-4
Figure 2-4. Indirect Register Addressing to Program Memory . 2-5
Figure 2-5. Indexed Register Addressing . 2-6
Figure 2-6. Direct Addressing . 2-7
Figure 2-7. Retrieve Addressing . 2-8
Figure 2-8. Immedate Data Addressing . 2-9

Chapter 3. Instruction Set
Figure 3-1. Flag Register . 3-5
Figure 3-2. Op Code Map . 3-18

Chapter 4. Interruupts
Figure 4-1. Interrupt Control Register Addresses and Identifiers . 4-1
Figure 4-2. Interrupt Block Diagram . 4-2
Figure 4-3. Interrupt Service Sequence . 4-4
Figure 4-4. Interrupt Mask Register . 4-5
Figure 4-5. Interrupt Mask 2 Register . 4-6
7/�������<�:���� ZK

<�2.757UGT U�/CPWCN
.KUV�QH�(KIWTGU =L/2*
Figure 4-6. Interrupt Request Register. 4-7
Figure 4-7. Interrupt Request Register 2 . 4-8
Figure 4-8. Stacks Before and After Interrupt . 4-10
Figure 4-9. Interrupt Vector Table Location . 4-11
ZKK 7/�������<�:����

<�2.75�75'4 5�/#07#.

.+56�1(�6#$.'5

%JCRVGT�6KVNG�CPF�5WDUGEVKQPU 2CIG
Chapter 1. Address Space
Table 1-1 Z8PLUS Core Control Registers .1-3
Table 1-1 Page 0 Register File Organization .1-4

Chapter 3. Instruction Set
Table 3-1 Load Instructions .3-2
Table 3-2 Arithmetic Instructions .3-2
Table 3-3 Logical Instructions .3-2
Table 3-4 Program Control Instructions .3-3
Table 3-5 Bit Manipulation Instructions .3-3
Table 3-6 Block Transfer Instructions. 3-3
Table 3-7 Rotate and Shift Instructions .3-4
Table 3-8 CPU Control Instructions .3-4
Table 3-9 Flag Definitions .3-7
Table 3-10 Flag Settings Definitions .3-8
Table 3-11 Condition Codes .3-8
Table 3-12 Notational Shorthand .3-10
Table 3-13 Additional Symbols .3-11
Table 3-14 Instruction Summary .3-13
Table 3-15 Lower Nibble Values .3-17
Table 3-16 DA Operation Reference .3-34
Table 3-17 Register Pointers, Working Register Groups, and Actual Registers 3-79

Chapter 4. Interrupts
Table 4-1 Z8E001 Interrupt Types, Sources, and Vectors .4-3
7/�������<�:���� ZKKK

<�2.75�75'4 5�/#07#.

%*#26'4��

#&&4'55�52#%'
INTRODUCTION

Two address spaces are available for the Z8PLUS MCU:

� Register file RAM contains addresses for all the control registers and all the general purpose registers.

� Program memory contains addresses for all memory locations where executable code and/or data are stored.

REGISTER FILE SPACE

The on-chip register file RAM is organized into 16 pages, where each page has 256 addressable memory loca-
tions. The first page (page 0) contains both control registers and general purpose registers. All the remaining
pages (pages 1 through 15) contain only general purpose registers. Figure 1-1 illustrates the complete register
file RAM space. As shown, control registers are located in the upper half of page 0. Any specific implemen-
tation of the Z8PLUS core may use only a subset of the complete register file RAM space.

Table 1-1 describes the Core Control Registers and Table 1-2 shows the Page 0 Register File organization.

All registers on the Z8PLUS-family products are fully read/writable. Hardware may write lock certain registers
or bits under some conditions. The TCTLHI register is one such example.
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-1. Complete Register File RAM Space

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

PA
G

E
NUM

BE
R

255

128

127

0

Control Registers

General Purpose Registers
 (GPRs)

PAGES 1 THROUGH 15
CONTAIN GENERAL
PURPOSE REGISTERS
256 THROUGH 4095
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
The Stack Pointer High register (0FEH), the interrupt mask register 2 (0F9H), and the interrupt request
register 2 (0F8H) are optional and are reserved if not implemented.

Table 1-1. Z8PLUS Core Control Registers

Hex Address Register Name Register Description Comments

0FFH STKPTR (SPL) Stack Pointer Low LSB of Stack Pointer

0FEH SPH Stack Pointer High MSB of Stack Pointer

0FDH REGPTR(RP) Register Pointer

0FCH FLAGS Flags

0FBH IMASK Interrupt Mask 1 Ints. 0 - 6

0FAH IREQ Interrupt Request 1 Ints. 0 - 6

0F9H IMASK2 Interrupt Mask 2 Ints. 7 - 14

0F8H IREQ2 Interrupt Request 2 Ints. 7 - 14

0F7H Reserved

0F6H Reserved

0F5H Reserved

0H4H Reserved

0F3H Reserved

0F2H Reserved

0F1H Reserved

0F0H Reserved
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*

ast
Registers can be accessed as either 8-bit or 16-bit registers using Direct, Indirect, or Indexed Addressing. All
general-purpose registers can be referenced or modified by any instruction that accesses an 8-bit register,
without the need for special instructions. Registers accessed as 16 bits are treated as even-odd register pairs.
In this case, the data’s Most Significant Byte (MSB) is stored in the even numbered register, while the Le
Significant Byte (LSB) goes into the next higher odd numbered register (Figure 1-2).

Table 1-2. Page 0 Register File Organization

Hex Address Range Register Description

F0 - FF Core Control Registers

E0 - EF Virtual Copy of the Current Working Register Set

D0 - DF Port Logic Control Registers

C0 -CF Timer Peripherals Control Registers

B0 - BF Reserved for Future Extensions

A0 - AF Reserved for Future Extensions

90 - 9F Reserved for Future Extensions

80 - 8F Reserved for Future Extensions

70 - 7F General Purpose Registers

60 - 6F General Purpose Registers

50 - 5F General Purpose Registers

40 - 4F General Purpose Registers

30 - 3F General Purpose Registers

20 - 2F General Purpose Registers

10 -1F General Purpose Registers

00 - 0F General Purpose Registers
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-2. 16-Bit Register Addressing

By using a logical instruction and a mask, individual bits within registers can be accessed for bit set, bit clear,
bit complement, or bit test operations. For example, the instruction AND R15, MASK performs a bit clear
operation. Figure 1-3 shows this example.

Figure 1-3. Accessing Individual Bits (Example)

When instructions are executed, registers are only read, not written, when defined as sources; and read and/or
written when defined as destinations. All General-Purpose Registers function as accumulators, address
pointers, index registers, stack areas, or scratch pad memory.

General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the device is powered up. The registers keep their last
value after any reset, as long as the reset occurs in the VCC voltage-specified operating range. It does not keep
its last state from a VLV reset if VCC drops below 1.8V.

MSB LSB

Rn Rn+1

n = Even
Address

0 1 1 1 0 0 0 0 R15

1 1 0 1 1 1 1 1 MASK

AND R15, DFH ;Clear Bit 5 of Working Register 15

0 1 0 1 0 0 0 0 R15
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Working Register Groups

Instructions can access 8-bit registers and register pairs (16-bit words) using either 4-, 8-, or 12-bit address
fields. Eight-bit address fields refer to the actual address of the register within the current page. For example,
Register 58H is accessed by calling upon its 8-bit address, 01011000 (58H). The lower nibble of the
Register Pointer specifies the current RAM page.

With 4-bit addressing, the register file is logically divided into 16 Working Register Groups of 16 registers
each, as shown in Table 1-3. These 16 registers are known as Working Registers. A Register Pointer (one of
the control registers, FDH) contains the base address of the active Working Register Group. The High nibble
of the Register Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit address of the Working Register is combined with
the upper four bits (High nibble) of the Register Pointer, thus forming the 8-bit actual address. Figure 1-4
illustrates this operation. Since working registers are typically specified by short format instructions, there are
fewer bytes of code needed. In addition, when processing interrupts or changing tasks, the Register Pointer
(see Figure 1-5) speeds context switching. A special Set Register Pointer (SRP) instruction sets the contents
of the Register Pointer.

Data transfer across RAM page boundaries can be accomplished via 12-bit addressing. Using certain instruc-
tion modes, data can be moved from the current page and working group into any register on the chip by spec-
ifying the absolute 12-bit address, including page. Not all family members support 12-bit addressing. See the
applicable product specification for specific information.

Table 1-3. Working Register Groups

Register Pointer (FDH)
High Nibble (Binary)

Working Register Group
(HEX) Actual Registers (HEX)

1111 F F0 - FF

1110 E E0 - EF

1101 D D0 - DF

1100 C C0 - CF

1011 B B0 - BF

1010 A A0 - AF

1001 9 90 - 9F

1000 8 80 - 8F

0111 7 70 - 7F
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-4. Working Register Addressing (Example)

0110 6 60 - 6F

0101 5 50 - 5F

0100 4 40 - 4F

0011 3 30 - 3F

0010 2 20 - 2F

0001 1 10 - 1F

0000 0 00 - 0F

Table 1-3. Working Register Groups (Continued)

Register Pointer (FDH)
High Nibble (Binary)

Working Register Group
(HEX) Actual Registers (HEX)

0 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 1 0 1 1 1 0

Register Pointer (FDH), = 70H

Actual Register Address (76H)

INC R6 (Instruction, Short Format)
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-5. Register Pointer

Precautions

Registers in the Standard Register File must be correctly used or certain conditions produce inconsistent
results.

� The watch-dog timer can only be disabled via software if the first instruction out of RESET performs this
function. During the execution of the first instruction after the Z8PLUS leaves RESET, the upper five bits of
the TCTLHI register can be written. After the first instruction, hardware does not allow the upper five bits
of this register to be written.

� Some control registers, including the port inputs and timer count registers, may be updated by hardware.
Writing these registers from software always overrides the hardware update from the same cycle, but with
unpredictable results. For example, writing into the count value register of a running timer can cause

FF

 F0

R7 R6 R5 R4 R3 R2 R1 R0

Specified Working Register Group

R253

EF
80
7F
70
6F
60
5F
50
4F
40
3F
30
2F
20
1F
10
0F

00

The lower nibble
of the register
file address,
provided by the
instruction, points
to the specified
register

The upper nibble of the register file address,
provided by the register pointer, specifies
the active working-register group.

(Register Pointer)

The lower nibble specifies the
current page of RAM.

Working Register Group 1

Working Register

Working Register Group F

Group 0

R15

R0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
unexpected results if the hardware was in the process of decrementing the timer for the terminal count and
generating an interrupt.

� The register space from 0E0H-0EFH is special. The MCU uses these addresses to flag accesses via 4-bit
addressing mode to the current working register group. There are no physical registers at that location. Care
must be taken that the Register Pointer never points at Group E on the first page (be loaded with E0H).
This is an undefined case. Also, indirect addressing does not redirect a second time and find the working
registers. This is also an undefined case. As an example, in the code below, R0 does not find the data in
register 08. It returns garbage. R2 correctly contains a copy of register 08.

SRP #%00

LD R1, #%E8

LD R0, @R1

LD R2,%E8
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
CONTROL AND PERIPHERAL REGISTERS

Control Registers

The standard control registers govern the operation of the CPU. Any instruction which references the register
file can access these control registers. Available control registers are:

� Stack Pointer Low (SPL or STKPTR)

� Stack Pointer High (SPH)

� Register Pointer (RP or REGPTR)

� Flags (FLAGS)

� Interrupt Mask 1 (IMASK)

� Interrupt Request 1 (IREQ)

� Interrupt Mask 2 (IMASK2)

� Interrupt Request 2 (IREQ2)

A 16-bit Program Counter (PC) to determine the sequence of current program instructions. The PC is not an
addressable register.

Peripheral Registers

Peripheral registers are used to transfer data, configure the operating mode, and control the operation of the
on-chip peripherals. Any instruction that references the register file can access the peripheral registers.
Possible peripheral registers can include:

� Timer Count Value Register for Timer n

� Auto-Initialization Value Register(s) for Timer n

� Timer Control Registers (High and Low Byte)

� Watch-Dog Timer Registers (High and Low Byte)

In addition, the port registers are considered to be peripheral registers. Ports generally have at least the
following four dedicated registers which are readable and writable by software:

� Port Input Value Register

� Port Output Value Register

� Port Control Register

� Port Special Function Register
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
PROGRAM MEMORY

The program memory map is shown in Figure 1-6. The first two bytes of program memory are reserved for
the PC rollover vector. When the PC wraps around to 0000H, bytes 0000H and 0001H are executed as
instructions, enabling a user defined behavior for this occurrence. For example, a JR instruction in 0000H
and a corresponding displacement in 0001H could be defined for the PC rollover vector. The next 30 bytes
of Program Memory are reserved for the interrupt vectors. These locations contain 16-bit vectors that corre-
spond to the available interrupts. Address 0020H through the end of the populated memory (0FFFFh, 64 KB
maximum) consists of on-chip mask-programmable ROM or EPROM or Flash. The first byte of program
memory executed following a RESET is located at 0020H. See the product data sheet for the exact program,
data, register memory size, and address range available.

The internal program memory may be one-time programmable (OTP) or mask programmable dependent on
the specific device. A ROM protect feature prevents dumping of the ROM contents. The ROM Protect option
is mask-programmable and is selected by the customer when the ROM code is submitted. For programmable
memory devices, the ROM Protect option is an OTP programming option.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-6. Program Memory Map

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

Hex

FFFF

00D

00C

00B

00A

009

008

007

006

005

004

003

002

001

000

00E

01F

020

021

Byte of Instruction
Executed After
RESET

IRQ6 - IRQ14

On-chip ROM or

Decimal

Address

65535

 33

 32

 31

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3
 2

 1

 0

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

PC Rollover Vector (JR Instruction)

PC Rollover Vector (Displacement)

Interrupt Vector (Lower Byte)

Interrupt Vector (Upper Byte)

User Code Space

(Available for
Devices With Fewer
Than 15 interrupts.)

EPROM Program Memory

Location of First
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
STACK

The stack always resides in the general purpose registers of the on-chip register file RAM. The stack pointer
register (SP) contains an address into the standard register file that is the address of the operand that is
currently on the top of the stack. The register 0FFH is the 8-bit stack pointer (SP), that is used for all stack
operations (see Figure 1-7).

Some devices prepend the lower nibble of register 0FEH to form a 12-bit stack pointer. Otherwise, register
0FEH is reserved.

Figure 1-7. Stack Pointer

The stack address is decremented prior to a PUSH operation and incremented after a POP operation. The stack
address always points to the data stored on the top of the stack. The stack is a return stack for CALL instruc-
tions and interrupts, as well as a data stack.

During a CALL instruction, the contents of the Program Counter are saved on the stack. The PC is restored
during a RET instruction. Interrupts cause the contents of the PC and FLAGS registers to be saved on the
stack. The IRET instruction restores them (see Figure 1-8).

An overflow or underflow can occur when the stack address is incremented or decremented during normal
stack operations. The programmer must prevent this occurrence or unpredictable operation may result. The
stack must not encroach into the control registers.

Stack Address

0FFH0FEH
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-8. Stack Operations

PCL

 Top of Stack

Stack Contents

PCH

PCL

PCH

FLAGS

After an
Interrupt Cycle

Stack Contents
After a Call
Instruction

 Top of Stack

Prior value of
Stack Pointer

Prior value of
Stack Pointer
� �� 7/�������<�:����

<�2.7575'4 5�/#07#.

%*#26'4��

#&&4'55+0)�/1&'5
 purpose
ADDRESSING MODES

The Z8PLUS microcontroller provides six addressing modes:

� Register (R)

� Indirect Register (IR)

� Indexed (X)

� Direct Address (DA)

� Relative Address (RA)

� Immediate Data (IM)

With the exception of immediate data and condition codes, all operands are expressed as register file or
Program Memory addresses. Registers are accessed using 12-bit addresses in the range of 000H-FFFH. The
Program Memory is accessed using 16-bit addresses (or register pairs) in the range of 0000H-FFFFH.

Generally, registers are accessed, within the current page, by specifying an 8-bit address. The upper 4 bits of
the absolute address is specified by pre-pending the lower 4 bits of the Register Pointer (0FDH) (the Page
Pointer) to the 8-bit address to form a 12-bit address.

Working Registers are accessed using 4-bit addresses in the range of 0-15 (0H-FH). The address of the
register being accessed is formed by the combination of the lower 4 bits of the RP (Page Pointer), the upper
four bits in the Register Pointer (Group Pointer) and the 4-bit working register address supplied by the instruc-
tion.

Registers can be used in pairs to designate 16-bit values or memory addresses. A Register Pair must be spec-
ified as an even-numbered address in the range of 0–14 for Working Registers, or 0–4094 for general
registers.
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUUKPI�/QFGU =L/2*
In the following definitions of Z8PLUS Addressing Modes, the use of register can also imply register pair,
working register, or working register pair, depending on the context.

NOTE: See the product data sheet for exact program and register memory types and address ranges
available.

REGISTER ADDRESSING (R)

In 8-bit Register Addressing mode, the operand value is equivalent to the contents of the specified register or
register pair.

In the Register Addressing (see Figure 2-1), the destination and/or source address specified corresponds to
the actual register in the current page of the register file.

Figure 2-1. 8-Bit Register Addressing

OpCode
One Operand

Register File

Operand

Program Memory

Points to
dst8-Bit Register

One Register
in the
Register
File

Instruction
(Example)

File Address
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUUKPI�/QFGU
Figure 2-2. 4-Bit Register Addressing

In 4-bit Register Addressing (see Figure 2-2), the destination and/or source addresses point to the Working
Register within the current Working Register Group. This 4-bit address is combined with the Register Pointer
to form the actual 12-bit address of the affected register.

INDIRECT REGISTER ADDRESSING (IR)

In the Indirect Register Addressing Mode, the contents of the specified register are equivalent to the address
of the operand (see Figure 2-3 and Figure 2-4).

Depending upon the instruction selected, the specified register contents points to a Register or Program
Memory location.

When accessing program memory, register pairs or Working Register pairs are used to hold the 16-bit
addresses.

OpCode
Two Operand

Register File

Operand

Program Memory

Points to

src4-Bit Working

One Register
in the
Register
File

Instruction
(Example)

Registers

Operand

 RP

dst

Points to
Origin of
Working
Register
Group
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUUKPI�/QFGU =L/2*
Figure 2-3. Indirect Addressing of Register File Memory

OpCode
One Operand

Register File

Operand

Program Memory

Points to One

8-Bit Register

Value Used in

Address of the Operand

Instruction
(Example)

File Address Addressdst

Points to the
Register of the
Operand

Register in the
Register File

Instruction
Execution

Used by the Instruction
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUUKPI�/QFGU
Figure 2-4. Indirect Register Addressing to Program Memory

INDEXED ADDRESSING (X)

The Indexed Addressing Mode is used only by the Load (LD) instruction. An indexed address consists of a
register address offset by the contents of a designated Working Register (the Index). This offset is added to
the register address to obtain the address of the operand. Figure 2-5 illustrates this addressing convention.

OpCodeInstruction Example

Program

Register File

Program Memory

Points to the
src

4-Bit Working

Points to the Origin

Registers Address

Register

dst

 RP

Operand

Pair LSB
Register
Pair MSB

Memory

Working
Register
Pair (Even
Address)

of the Working
Register Group

16-Bit Address
Points to Program
Memory

References
Program Memory

Value Used in
the Instruction
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUUKPI�/QFGU =L/2*
Figure 2-5. Indexed Register Addressing

OpCode

Register File

Program Memory

Points to the

src

Two Operand

Points to the Origin

Instruction dst/

RP

Operand

 Offset

Working Register

OffsetAddress

of Working
Register Group

Value Used in
the Instruction

Address

X

� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUUKPI�/QFGU
DIRECT ADDRESSING (DA)

The Direct Addressing mode, as shown in Figure 2-6, specifies the address of the next instruction to be
executed. Only the Conditional Jump (JP) and Call (CALL) instructions use this addressing mode.

Figure 2-6. Direct Addressing

OpCode

Upper Addr. Byte

 Lower Addr. Byte

Program Memory

Program Memory
Address Used
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUUKPI�/QFGU =L/2*

ement
RELATIVE ADDRESSING (RA)

In the Relative Addressing mode, illustrated in Figure 2-7, the instruction specifies a two’s-compl
signed displacement in the range of –128 to +127. This is added to the contents of the Program Counter to
obtain the address of the next instruction to be executed. The PC (prior to the add) consists of the address of
the instruction following the Jump Relative (JR) or Decrement and Jump if Non-Zero (DJNZ) instruction. JR
and DJNZ are the only instructions which use this addressing mode.

Figure 2-7. Retrieve Addressing

OpCode

Displacement

 Next OpCode

Current

JR or DJNZ

Program Memory

Program Memory
Address Used

PC Value
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUUKPI�/QFGU
IMMEDIATE DATA ADDRESSING (IM)

Immediate data is considered to be an addressing mode for the purposes of this discussion. It is the only
addressing mode that does not indicate a register or memory address as the source operand. The operand value
used by the instruction is the value supplied in the operand field itself. Because an immediate operand is part
of the instruction, it is always located in the Program Memory address space (see Figure 2-8).

Figure 2-8. Immedate Data Addressing

OpCode

Immediate Data

 Program Memory
7/�������<�:���� � �

<�2.7575'4 5�/#07#.

%*#26'4��
+05647%6+10�5'6
FUNCTIONAL SUMMARY

Z8PLUS instructions can be divided into the following eight functional groups:

� Load

� Arithmetic

� Logical

� Program Control

� Bit Manipulation

� Block Transfer

� Rotate and Shift

� CPU Control

Table 3-1 through Table 3-8 show the instructions belonging to each group and the number of operands
required for each. The source operand is src, the destination operand is dst, and a condition code is cc.

When instructions are executed, registers defined as sources are read only. All General-Purpose Registers
function as:

� accumulators

� address pointers

� index registers

� stack areas

� scratch pad memory
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-1. Load Instructions

Mnemonic Operands Instruction

CLR dst Clear

LD dst, src Load

LDC dst, src Load Constant

POP dst Pop

PUSH src Push

Table 3-2. Arithmetic Instructions

Mnemonic Operands Instruction

ADC dst, src Add with Carry

ADD dst, src Add

CP dst, src Compare

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

SBC dst, src Subtract with Carry

SUB dst, src Subtract

Table 3-3. Logical Instructions

Mnemonic Operands Instruction

AND dst, src Logical AND

COM dst Complement

OR dst, src Logical OR

XOR dst, src Logical Exclusive OR
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-4. Program Control Instructions

Mnemonic Operands Instruction

CALL dst Call Procedure

DJNZ dst, src Decrement and Jump Non-Zero

IRET Interrupt Return

JP cc, dst Jump

JR cc, dst Jump Relative

RET Return

Table 3-5. Bit Manipulation Instructions

Mnemonic Operands Instruction

TCM dst, src Test Complement
Under Mask

TM dst, src Test Under Mask

AND dst, src Bit Clear

OR dst, src Bit Set

XOR dst, src Bit Complement

Table 3-6. Block Transfer Instructions

Mnemonic Operands Instruction

LDCI dst, src Load Constant
Auto Increment
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-7. Rotate and Shift Instructions

Mnemonic Operands Instruction

RL dst Rotate Left

RLC dst Rotate Left Through Carry

RR dst Rotate Right

RRC dst Rotate Right Through Carry

SRA dst Shift Right Arithmetic

SWAP dst Swap Nibbles

Table 3-8. CPU Control Instructions

Mnemonic Operands Instruction

CCF Complement Carry Flag

DI Disable Interrupts

EI Enable Interrupts

HALT Halt

NOP No Operation

RCF Reset Carry Flag

SCF Set Carry Flag

SRP src Set Register Pointer

STOP Stop

WDT Refresh WDT
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

itions

s. Four

g and
oftware.

wever,
 a value.

PROCESSOR FLAGS

The Flag Register (FCH) informs the user of the processor’sbcurrent status. The flags and their bit pos
in the Flag Register are shown in Figure 3-1.

The Flag Register contains eight bits of status information which are set or cleared by CPU operation
of the bits (C, V, Z and S) can be tested for use with conditional Jump instructions. Two flags (H and D) are
used for BCD arithmetic. The two remaining bits in the Flag Register are the watch-dog timer reset fla
the stop mode recovery flag. Both of these flag bits may be tested and must be explicitly cleared by s

As with bits in the other control registers, the Flag Register bits can be set or reset by instructions; ho
only those instructions that do not affect the flags as an outcome of the execution should be assigned

Figure 3-1. Flag Register

Flag Register (FCH: Read/Write) R252 Flags

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset U U U U U U * *

R = Read W = Write X = Indeterminate U = Unchanged

Bit/Field
Bit

Position
R/W Value Description

Carry
Flag (C)

7 R/W The Carry Flag is set to 1 whenever the result of an arithmetic
operation generates a carry out of or a borrow into the high
order bit 7. Otherwise, the Carry Flag is cleared to 0.
Following Rotate and Shift instructions, the Carry Flag
contains the last value shifted out of the specified register.

An instruction can set (I), reset(O), or complement the Carry
Flag.

The carry flag is not effected by RESET.

Zero
Flag (Z)

6 R/W For arithmetic and logical operations, the Zero Flag is set to 1 if
the result is 0. Otherwise, the Zero Flag is cleared to 0.

If the result of testing bits in a register is 00H, the Zero Flag is
set to 1. Otherwise the Zero Flag is cleared to 0.

If the result of a Rotate or Shift operation is 00H, the Zero
Flag is set to 1.

The Zero Flag is not effected by a RESET command.
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

nd

w

t

s

Sign Flag
(S)

5 R/W The Sign Flag stores the value of the most significant bit of a
result following an arithmetic, logical, rotate, or shift operation.

When performing arithmetic operations on signed numbers,
binary two’s-complement notation is used to represent a
process information. A positive number is identified by a 0 in
the most significant bit position (bit 7); therefore, the Sign Flag
is also 0.

A negative number is identified by a 1 in the most significant bit
position (bit 7); therefore, the Sign Flag is also 1.

The Sign Flag is not effected by RESET.

Overflow
(V)

4 R/W For signed arithmetic, rotate, and shift operations, the Overflo
Flag is set to 1 when the result is greater than the maximum
possible number (>127) or less than the minimum possible
number (<−128) that can be represented in two’s-complemen
form . The Overflow Flag is cleared to 0 if no overflow occurs.

Following logical operations the Overflow Flag is cleared to 0.

The Overflow Flag is not effected by RESET.

Decimal
Adjust
Flag (D)

3 R/W The Decimal Adjust Flag is used for BCD arithmetic. Since the
algorithm for correcting BCD operations is different for addition
and subtraction, this flag specifies what type of instruction wa
last executed so that the subsequent Decimal Adjust (DA) oper-
ation can function properly. Normally, the Decimal Adjust Flag
cannot be used as a test condition.

After a subtraction, the Decimal Adjust Flag is set to 1.
Following an addition it is cleared to 0.

The Decimal Adjust Flag is not effected by RESET.

Half-
Carry
Flag (H)

2 R/W The Half Carry Flag is set to 1 whenever an addition generates
a carry out of bit 3 (Overflow) or a subtraction generates a
“borrow into” bit 3. The Half Carry Flag is used by the Decimal
Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. As
in the case of the Decimal Adjust Flag, the user does not
normally access this flag.

The Half Carry flag is not effected by RESET.
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
CONDITION CODES

The C, Z, S, and V Flags control the operation of the conditional JUMP instructions. Sixteen frequently useful
functions of the flag settings are encoded in a 4-bit field called the condition code (cc), which forms bits
4-7 of the conditional instructions.

Flag Definitions, Flag Settings and Condition Codes are summarized in Table 3-9, Table 3-10, and
Table 3-11.

Watch-
Dog
Timer
(WDT)

1 R/W The Watch-Dog Timer reset flag is set by a watchdog timer
timeout. This permits software to determine if a timeout of the
watchdog timer has occurred.

The WDT flag is cleared by the RESET pin. The WDT and
SMR flags are the only flags effected by RESET. This behavior
permits software to determine if a RESET occurred, if a WDT
timeout occurred, or if a return from STOP mode occurred.

Software must explicitly clear this flag after detecting the
timeout condition.

 Failure to clear this flag may result in undefined behavior.

Stop
Mode
Recovery
Flag
(SMR)

0 R/W The Stop Mode Recovery (SMR) flag is set upon the execution
of a STOP instruction. This permits software to determine if a
return from stop mode has occurred upon returning to active
status.

The SMR flag is cleared by the RESET pin. The WDT and SMR
flags are the only flags effected by RESET. This behavior
permits software to determine if a RESET occurred, if a WDT
timeout occurred, or if a return from STOP mode occurred.

Software must explicitly clear this flag after detecting the SMR
condition.

Failure to clear this flag may result in undefined behavior.

Table 3-9. Flag Definitions

Flag Description

C Carry Flag

Z Zero Flag

S Sign Flag

V Overflow Flag
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Table 3-10. Flag Settings Definitions

Symbol Definition

0 Cleared to 0

1 Set to 1

* Set or cleared according to operation

– Unaffected

X Undefined

Table 3-11. Condition Codes

Binary HEX Mnemonic Definition Flag Settings

0000 0 F Always False –

1000 8 (blank) Always True –

0111 7 C Carry C = 1

1111 F NC No Carry C = 0

0110 6 Z Zero Z = 1

1110 E NZ Non-Zero Z = 0

1101 D PL Plus S = 0

0101 5 Ml Minus S = 1

0100 4 OV Overflow V = 1

1100 C NOV No Overflow V = 0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
0110 6 EQ Equal Z = 1

1110 E NE Not Equal Z = 0

1001 9 GE Greater Than or Equal (S XOR V) = 0

0001 1 LT Less Than (S XOR V) = 1

1010 A GT Greater Than (Z OR (S XOR V)) = 0

0010 2 LE Less Than or Equal (Z OR (S XOR V)) = 1

1111 F UGE Unsigned Greater Than or Equal C = 0

0111 7 ULT Unsigned Less Than C = 1

1011 B UGT Unsigned Greater Than (C = 0 AND Z = 0) = 1

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

Table 3-11. Condition Codes (Continued)

Binary HEX Mnemonic Definition Flag Settings
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
NOTATION AND BINARY ENCODING

The operands and status flags use a notational shorthand. Operands, condition codes, address modes, and their
notations are described in Table 3-12.

Table 3-12. Notational Shorthand

Notation Address Mode Operand Range*

cc Condition Code See Table 3-11, condition codes

r Working Register Rn n = 0 – 15

R Register
or
Working Register

Reg

Rn

Reg. represents a number in the range of
00H to FFH
n = 0 – 15

RR Indirect Register Pair
or
Working Register Pair

Reg

RRp

p = 0, 2, 4, 6, 8, 10, 12, or 14

Ir Indirect Working Register @Rn n = 0 –15

IR Indirect Register
or
Indirect Working Register

@Reg

@Rn

Reg. represents a number in the range of
00H to FFH
n = 0– 15

Irr Indirect Working Register
Pair

@RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

IRR Indirect Register Pair
or
Working Register Pair

@Reg

@RRp

Reg. represents an even number in the
range 00H to FFH
p=0, 2, 4, 6, 8, 10, 12, or 14

X Indexed Reg (Rn) Reg. represents a number in the range of
00H to FFH
n = 0 – 15

DA Direct Address Addrs Addrs. represents a number in the range
of 0000H to FFFFH

RA Relative Address Addrs Addrs. represents a number in the range
of +127 to –128 which is an offset relative
to the address of the next instruction

IM Immediate #Data Data is a number between 00H to FFH

*See the device product specification to determine the exact register file range available. The register file size varies
by the device type.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-13, which follows, describes additional symbols used.

Assignment of a value is indicated by the symbol ←, for example:

dst ← dst + src

indicates the source data is added to the destination data and the result is stored in the destination location.

The notation addr(n) is used to refer to bit ’n’ of a given location. The following example refers to bit 7 of
the destination operand.

dst (7)

Some instructions operate with several addressing modes. This situation is indicated by an op code number
written like x[]. The brackets are filled by a nibble indicating the addressing mode in use. For example,
ADD 0[] indicates that the ADD instruction works identically for more than one addressing mode.

Table 3-13. Additional Symbols

Symbol Definition

dst Destination Operand

src Source Operand

@ Indirect Address Prefix

SP Stack Pointer

PC Program Counter

FLAGS Flag Register (FCH)

RP Register Pointer (FDH)

IMR Interrupt Mask Register (FBH)

Immediate Operand Prefix

% Hexadecimal Number Prefix

H Hexadecimal Number Suffix

B Binary Number Suffix

OPC op code
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*

cify any
ed. If a
the 4-bit
ssembly

register

ncoded

de pair.
Assembly Language Syntax

For proper instruction execution, assembly language syntax requires that the destination and source be spec-
ified as dst, src (in that order). The following instruction descriptions show the format of the object code
produced by the assembler. This binary format should be followed by users who prefer manual program
coding or who intend to implement their own assembler. Other third party assemblers can differ. Please
consult the software user’s manual for detailed information.

Example: The contents of registers 43H and 08H are added, and the result is stored in 43H. The assembly
syntax and resulting object code are:

In general, whenever an instruction format requires an 8-bit register address, that address can spe
register location in the range 0 - 255. When using working registers (R0-R15), a 4-bit address is us
working register is used and an 8-bit address is required by the assembler, an E is pre-pended to
working register address. If, in the above example, the source register is a working register, the a
syntax and resulting object code are:

NOTES:

1. Note that the 4-bit address R8 was expanded to 8-bits by pre-pending EH. This expansion occurs any
time a 4-bit address isspecified for an instruction that takes 8-bit operands.

2. See the device product specification to determine the exact register file range available. The
file size varies by device type

Z8PLUS INSTRUCTION SUMMARY

The instructions marked with this symbol (†) have an identical set of addressing modes, which are e
for brevity. The upper nibble is described in Table 3-14, and the lower nibble is represented by []. The
second nibble’s value is described in Table 3-15, and is found beside the applicable addressing mo
For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source)
is 13H.

ASM: ADD 43H, 08H (ADD dst, src)

OBJ: 04 08 43 (OPC src, dst)

ASM: ADD 43H, R8 (ADD dst, src)

OBJ: 04 E8 43 (OPC src, dst)
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Table 3-14. Instruction Summary

Address
Mode

op code
Byte (Hex)

Flags Affected

Instruction and Operation dst src C Z S V D H

ADC dst, src
dst ← dst + src +C

† 1[] * * * * 0 *

ADD dst, src
dst ← dst + src

† 0[] * * * * 0 *

AND dst, src
dst ← dst AND src

† 5[] – * * 0 – –

CALL src
SP ← SP – 2
PC ← src

DA D6 – – – – – –

CALL src
SP ← SP – 2
PC ← @src

IRR D4 – – – – – –

CCF
C ←NOT C

EF * – – – – –

CLR dst
dst ← 0

R
IR

B0
B1

– – – – – –

COM dst
dst ← NOT dst

R
IR

60
61

– * * 0 – –

CP dst, src
dst − src

† A[] * * * * – –

DA dst
dst ← DA dst

R
IR

40
41

* * * – – –

DEC dst
dst ← dst – 1

R
IR

00
01

– * * * – –

DECW dst
dst ← dst – 1

RR
IR

80
81

– * * * – –
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

DI
IMR(7) ← 0

8F – – – – – –

DJNZ, dst, src r RA
dst ← dst – 1
if dst ≠ 0
then PC ← PC + src
Range: -128 ≤ src ≤ 127

RA rA
(r = 0 – F)

– – – – – –

EI
IMR(7) ← 1

9F – – – – – –

HALT 7F – – – – – –

INC dst
dst ← dst + 1 r

R
IR

rE
(r = 0 – F)

20
21

– * * * – –

INCW dst
dst ← dst + 1

RR
IR

A0
A1

– * * * – –

IRET
FLAGS←@SP;
SP ← SP + 1
PC ← @SP;
SP ← SP + 2;
IMR(7) ← 1

BF * * * * * *

JP cc, src
if cc is true,
then PC ← src

DA ccD
(cc = 0 – F)

– – – – – –

JP src
PC ← @src

IRR 30 – – – – – –

JR cc, src
if cc is true,
then PC ← PC + src
Range: -128 ≤ src ≤ 127

RA ccB
c = 0 – F

– – – – – –

Table 3-14. Instruction Summary (Continued)
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

LD dst, src
dst ← src

r
r
R

r
X
r
Ir
R
R
R
IR
IR

Im
R
r

X
r
Ir
r
R
IR
IM
IM
R

r C
r 8
r 9

(r = 0 – F)
C7
D7
E3
F3
E4
E5
E6
E7
F5

– – – – – –

LDC dst, src
dst ← src

r
lrr

Irr
r

C2
D2

– – – – – –

LDCI dst, src
@dst ← @src
dst ← dst + 1
src ←src + 1

Ir
lrr

Irr
r

C3
D3

– – – – – –

NOP FF – – – – – –

OR dst, src
dst ← dst OR src

† 4[] – * * 0 – –

POP dst
dst ← @SP
SP ← SP + 1

R
IR

50
51

– – – – – –

PUSH src
SP ← SP – 1
@SP ← src

R
IR

70
71

– – – – – –

RCF
C ← 0

CF 0 – – – – –

RET
PC ← @SP;
SP ← SP + 2

AF – – – – – –

RL dst R
IR

90
91

* * * * – –

Table 3-14. Instruction Summary (Continued)

C 7 0
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
Instruction and Operation
Address Mode op code

Byte (Hex)
Flags Affected

dst src C Z S V D H

RLC dst R
IR

10
11

* * * * – –

RR dst R
IR

E0
E1

* * * * – –

RRC dst R
IR

C0
C1

* * * * – –

SBC dst, src
dst ← dst – src –
 C

† 3[] * * * * 1 *

SCF
C ← 1

DF 1 – – – – –

SRA dst R
IR

D0
D1

* * * 0 – –

SRP src
RP ← src

Im 31 – – – – – –

STOP 6F – – – – – –

SUB dst, src
dst ← dst – src

† 2[] * * * * 1 *

SWAP dst R
IR

F0
F1

– * * – – –

TCM dst, src
(NOT dst) AND src

† 6[] – * * 0 – –

TM dst, src
dst AND src

† 7[] – * * 0 – –

WDT 5F – – – – – –

XOR dst, src
dst ← dst XOR src

† 7[] – * * 0 – –

Table 3-14. Instruction Summary (Continued)

C 7 0

C 7 0

C 7 0

C
7 0

7 4 3 0
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PUVTWEVKQP�5GV
Figure 3-2, which follows, illustrates the Op Code map.

Table 3-15. Lower Nibble Values

Address Mode
dst src

Lower
op code Nibble

r r [2]

r Ir [3]

R R [4]

R IR [5]

R IM [6]

IR IM [7]
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PUVTWEVKQP�5GV =L/2*
OP CODE MAP

Figure 3-2. Op Code Map

LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F

U
P

P
E

R
 N

IB
B

L
E

 (
H

E
X

)

0
DEC
R1

DEC
IR1

ADD
r1, r2

ADD
r1, Ir2

ADD
R2, R1

ADD
IR2, R1

ADD
R1, IM

ADD
IR1, IM

LD
r1, R2

LD
r2, R1

DJNZ
r1, RA

JR
cc, RA

LD
r1, IM

JP
cc, DA

INC
r1

1
RLC
R1

RLC
IR1

ADC
r1, r2

ADC
r1, Ir2

ADC
R2, R1

ADC
IR2, R1

ADC
R1, IM

ADC
IR1, IM

2
INC
R1

INC
IR1

SUB
r1, r2

SUB
r1, Ir2

SUB
R2, R1

SUB
IR2, R1

SUB
R1, IM

SUB
IR1, IM

3 JP
IRR1

SRP
IM

SBC
r1, r2

SBC
r1, Ir2

SBC
R2, R1

SBC
IR2, R1

SBC
R1, IM

SBC
IR1, IM

4
DA
R1

DA
IR1

OR
r1, r2

OR
r1, Ir2

OR
R2, R1

OR
IR2, R1

OR
R1, IM

OR
IR1, IM

5
POP
R1

POP
IR1

AND
r1, r2

AND
r1, Ir2

AND
R2, R1

AND
IR2, R1

AND
R1, IM

AND
IR1, IM WDT

6
COM
R1

COM
IR1

TCM
r1, r2

TCM
r1, Ir2

TCM
R2, R1

TCM
IR2, R1

TCM
R1, IM

TCM
IR1, IM STOP

7
PUSH

R2
PUSH

IR2
TM

r1, r2
TM

r1, Ir2
TM

R2, R1
TM

IR2, R1
TM

R1, IM
TM

IR1, IM HALT

8
DECW
RR1

DECW
IR1 DI

9
RL
R1

RL
IR1 EI

A
INCW
RR1

INCW
IR1

CP
r1, r2

CP
r1, Ir2

CP
R2, R1

CP
IR2, R1

CP
R1, IM

CP
IR1, IM RET

B
CLR
R1

CLR
IR1

XOR
r1, r2

XOR
r1, Ir2

XOR
R2, R1

XOR
IR2, R1

XOR
R1, IM

XOR
IR1, IM IRET

C
RRC
R1

RRC
IR1

LDC
r1, Irr2

LDCI
Ir1, Irr2

LD
r1,x,R2 RCF

D
SRA
R1

SRA
IR1

LDC
Irr1, r2

LDCI
Irr1, Ir2

CALL*
IRR1

CALL
DA

LD
r2,x,R1 SCF

E
RR
R1

RR
IR1

LD
r1, IR2

LD
R2, R1

LD
IR2, R1

LD
R1, IM

LD
IR1, IM CCF

F
SWAP

R1
SWAP

IR1
LD

Ir1, r2
LD

R2, IR1 NOP

2 3 2 3 1

BYTES PER INSTRUCTION

Notes:

All Z8PLUS instructions execute in ten XTAL clock
cycles, (1 µS at 10 MHz).

Blank areas are reserved and execute as NOP.

* 2-byte instruction appears as a 3-byte instruction.

Legend:
R = 8-bit Addr
r = 4-bit Addr
R1 or r1 = Dst Addr
R2 or r2 = Src Addr

Sequence:
op code,
First Operand,
Second Operand

 CP

4

A

Lower op code Nibble

Mnemonic

Second Operand

Upper
op code

Nibble

First Operand

R2, R1
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
INSTRUCTION DESCRIPTION AND FORMATS

The following section lists each instruction set, and describes the:

� Instruction Format

� Operation performed

� Flag Conditions

� Examples of the code

The format for the instruction uses the following conventions:

NOTE: The bytes shown in the boxes are in machine code order. The ZiLOG assembler always requires
the format OPC, dst, src.

Address modes R or IR can be used to specify a 4-bit working register. In this format, the source or destina-
tion working-register operand is specified by adding 1110B (EH) to the High nibble of the operand. For
example, if working register R12 (CH) is the destination operand, then ECH is used as the destination operand
in the Op Code.

Address mode IRR can be used to specify a 4-bit working register Pair. In this format, the destination working
register Pair operand is specified by adding 1110B (EH) to the High nibble of the operand. For example, if
working register Pair RR12 (CH) is the destination operand, then ECH is used as the destination operand in
the Op Code.

E src or E dst

E dst

4 Bits 8 Bits 12 Bits 16 Bits
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*

’s
 source
dition

posite

se,
ADC
Add with Carry

Instruction Format:
ADC dst, src

Operation:

dst ← dst + src + C

The source operand, along with the setting of the Carry (C) Flag, is added to the destination operand. Two
complement addition is performed. The sum is stored in the destination operand. The contents of the
operand are not changed. In multiple precision arithmetic, this instruction permits the carry from the ad
of low order operands to be carried into the addition of high order operands.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if a value is carried from the most signigicant bit of the result; otherwise, 0.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if the result is a negative value; otherwise, 0.

V: 1 if an arithmetic overflow occurs (both operands have the same sign and the result has the op
sign; otherwise, 0.

D: 0.

H: 1 if a value is carried from the most significant bit of the low-order four bits of the result; otherwi
0.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode
dst src

12
13

r
r

r
Ir

14
15

R
R

R
IR

16
17

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
ADC
Add with Carry

Example: Working register R3 contains 16H. The C flag is set to 1. Working register R11 contains 20H. The
following statement leaves the value 37H in working register R3, and the C, Z, S, V, D, and H flags are set to 0.

ADC R3, R11
Op Code: 12 3B.

Example: Working register R16 contains 16H. The C flag is not set. Working register R10 contains 20H.
Register 20H contains 11H. The following statements leave the value 27H in working register R16; the C, Z,
S, V, D, and H flags are set to 0.

ADC R16, @R10
Op Code: 13 FA

Example: Register 34H contains 2EH. The C flag is set. Register 12H contains 1BH. The following state-
ment leaves the value 4AH in register 34H. The H flag is set, and the C, Z, S, V, and D flags are set to 0.

ADC 34H, 12H
Op Code: 14 12 34

Example: Register 4BH contains 82H. The C flag is set. Working register R3 contains 10H. Register 10H
contains 01H. The following statement leaves the value 84H in register 4BH. The S flag is set to 1, and the
C, Z, V, D, and H flags are set to 0.

ADC 4BH, @R3
Op Code: 15 E3 4B
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
ADC
Add with Carry

Example: Register 6CH contains 2AH. The C flag is not set. The following statement leaves the value 2DH
in register 6CH. The C, Z, S, V, D, and H flags are set to 0.

ADC 6CH, #03H
Op Code: 16 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The C flag is set. The following state-
ment leaves the value 4FH in register 5FH. The C, Z, S, V, D, and H flags are set to 0.

ADC @D4H, #02H
Op Code: 17 D4 02
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG

he sum
ADD
Add

Instruction Format:

ADD dst, src

Operation:

dst ← dst + src

The source operand is added to the destination operand. Two’s complement addition is performed. T
is stored in the destination operand. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if a value is carried from the most significant bit of the result; otherwise, 0.

Z: 1et if the result is 0; otherwise, 0.

S: 1 if the result is negative; otherwise, 0.

V: 1 if an arithmetic overflow occurs(both operands have the same sign and the result has the
opposite sign); otherwise, 0.

D: 0.

H: 1 if a value is carried from the most significant bit of the result’s low-order four bits;
otherwise, 0.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode
dst src

02
03

r
r

r
Ir

04
05

R
R

R
IR

06
07

R
IR

IM
IM
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
ADD
Add

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
leaves the value 36H in working register R3. The C, Z, S, V, D, and H flags are set to 0.

ADD R3, R11
Op Code: 02 3B

Example: Working register R16 contains 16H. Working register R10 contains 20H. Register 20H contains
11H. The following statement leaves the value 27H in working register R16. The C, Z, S, V, D, and H flags
are set to 0.

ADD R16,@R10
Op Code: 03 FA

Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement leaves the value
49H in register 34H. The H flag is set to 1, and the C, Z, S, V, and D flags are set to 0.

ADD 34H,12H
Op Code: 04 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains 01H. The
following statement leaves the value 83H in register 4BH. The S flag is set, and the C, Z, V, D, and H flags
are set to 0.

ADD 3EH, @R3
Op Code: 05 E3 4B

Example: Register 6CH contains 2AH. The following statement leaves the value 2DH in register 6CH. The
C, Z, S, V, D, and H flags are set to 0.

ADD 6CH, #03H
Op Code: 06 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The following statement leaves the value
4EH in register 5FH. The C, Z, S, V, D, and H flags are set to 0.

ADD @D4H, #02H
Op Code: 07 D4 02
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
AND
Logical AND

Instruction Format:

AND dst, src

Operation:

dst ← dst AND src

The source operand and the destination operandare processed with a logical AND operation. The result is a
1 stored whenever the corresponding bits in the two operands are both 1; otherwise, a 0 is stored. The result
is stored in the destination operand. The contents of the source register are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Working register R1 contains 34H (00111000B) and working register R14 contains 4DH
(10001101). The following statement leaves the value 04H (00001000) in working register R1. The Z, V,
and S flags are set to 0.

AND R1, R14
Op Code: 52 1E

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode
dst src

52
53

r
r

r
Ir

54
55

R
R

R
IR

56
57

R
IR

IM
IM
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
AND
Logical AND

Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register
7BH contains 6AH (01101010B). The following statement leaves the value 68H (01101000B) in
working register R4. The Z, V, and S flags are set to 0.

AND R4, @R13
Op Code: 53 4D

Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH
(00001010). The following statement leaves the value 00H (00000000B) in register 3AH. The Z flag is
setto 1, and the V and S flags are cleared.

AND 3AH, 42H
Op Code: 54 42 3A

Example: If working register R5 contains F0H (11110000B). Register 45H contains 3AH. Register 3AH
contains 7FH (01111111B). The following statement leaves the value 70H (01110000B) in working
register R5. The Z, V, and S flags are set to 0.

AND R5, @45H
Op Code: 55 45 E5

Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value
F0H (11110000B) in register 7AH. The S flag is set to 1, and the Z and V flags are set to 0.

AND 7AH, #F0H
Op Code: 56 7A F0

Example: Working register R3 contains the value 3EH. Register 3EH contains the value ECH
(11101100B). The following statement leaves the value 04H (00000100B) in register 3EH. The Z, V, and
S flags are set to 0.

AND @R3, #05H
Op Code: 57 E3 05
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
CALL
Call Procedure

Instruction Format:

CALL dst

Operation:

SP ← SP - 2
@SP ← PC
PC ← dst

The Stack pointer (SP) is decremented by 2. The current contents of the program counter (PC) (the address
of the first instruction following the CALL instruction) are pushed onto the top of the Stack. The specified
destination address is then loaded into the PC, which points to the first instruction of the procedure.

At the end of the procedure a return (RET) instruction can be used to return to the original program flow. RET
pops the top of the Stack and replaces the original value into the PC.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC dst

OPC (Hex)
Address Mode

dst

D6 DA

D4 IRR
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
CALL
Call Procedure

Example: The contents of the PC are 1A47H and the contents of the SP (registers FEH and FFH) are 3002H.
The following statements cause the SP to be decremented to 3000H, 1A4AH.The address following the
CALL instructionis stored in external data memory at addresses 3000 and 3001H. The PC is loaded with
3521H and now points to the address of the first statement in the procedure to be executed.

CALL 3521H
Op Code: D6 35 21

Example: The contents of the PC are 1A47H. The contents of the SP (register FFH) are 72H. The contents
of register A4H are 34H. The contents of register pair 34H are 3521H. The following statements cause the
SP to be decremented to 70H, 1A4AH.The address following the CALL instructionis stored in R70H and
71H. The PC is loaded with 3521H and now points to the address of the first statement in the procedure to
be executed

CALL @A4H
Op Code: D4 A4
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
CCF
Complement Carry Flag

Instruction Format:

CCF

Operation:

C ← NOT C

The C flag is complemented. If C = 1, then it is changed to C = 0; or, if C = 0, then it is changed to C = 1.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The C flag contains a 0. The following statement changes the C flag from C = 0 to C = 1.

CCF
Op Code: EF

C: The value set by the preceding instruction is complemented.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

EF
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
CLR
Clear

Instruction Format:

CLR dst

Operation:

dst ← 0

The destination operand is set to 00H.

Flags

When the instruction is executed, the flags are set as follows:

Example: Working register R6 contains AFH. The following statement leaves the value 00H in working
register R6.

CLR R6
Op Code: B0 E6

Example: Register A5H contains the value 23H. Register 23H contains the value FCH. The following state-
ment leaves the value 00H in register 23H.

CLR @A5H
Op Code: B1 A5

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

B0
B1

R
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
COM
Complement

Instruction Format:

COM dst

Operation:

dst ← NOT dst

The contents of the destination operand are complemented (one’s complement). All 1 bits are changed to 0,
and all 0 bits are changed to 1.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Register 08H contains 24H (00100100B). The following statement leaves the value DBH
(11011011) in register 08H. The S flag is set to 1, and the Z and V flags are set to 0.

COM 08
Op Code: 60 08

Example: Register 08H contains 24H, and register 24H contains FFH (11111111B). The following state-
ment leaves the value 00H (00000000B) in register 24H. The Z flag is set to 1, and the V and S flags are
set to 0.

COM @08H
Op Code: 61 08

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if result bit 7 is set; otherwise, 0.

V: 0

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

60
61

R
IR
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
CP
Compare

Instruction Format:

CP dst, src

Operation:

dst - src

The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are
set accordingly. The contents of both operands are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if a value is carried from the most significant bit of the result, otherwise, 0.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0.

V: 1 if arithmetic overflow occurs; otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

A2
A3

r
r

r
Ir

A4
A5

R
R

R
IR

A6
A7

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
CP
Compare

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
sets the C and S flags to 1, and the Z and V flags are set to 0.

CP R3, R1
Op Code: A2 3B

Example: Working register R15 contains 16H. Working register R10 contains 20H. Register 20H contains
11H. The following statement sets the C, Z, S, and V flags to 0.

CP R16, @R10
Op Code: A3 FA

Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement sets the C, Z, S,
and V flags to 0.

CP 34H,12H
Op Code: A4 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains 01H. The
following statement sets the S flag to 1, and the C, Z, and V flags are set to 0.

CP 4BH, @R3
Op Code: A5 E3 4B

Example: Register 6CH contains 2AH. The following statement sets the Z flag to 1, and the C, S, and V flags
are se to 0.

CP 6CH, #2AH
Op Code: A6 6C 2A

Example: Register D4H contains FCH. Register FCH contains 8FH. The following statement sets the V flag
to 1, and the C, Z, and S flags are set to 0.

CP @D4H, 7FH
Op Code: A7 D4 FF
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
DA
Decimal Adjust

Instruction Format:

DA dst

Operation:

dst ← DA dst

The destination operand is adjusted to two 4-bit BCD digits following a binary addition or subtraction opera-
tion on BCD-encoded bytes. For addition (ADD and ADC) or subtraction (SUB and SBC), Table 3-14 indicates
the operation performed.

Note: If the destination operand is not the result of a valid addition or subtraction of BCD digits, the result is meaningless.

Table 3-16. DA Operation Reference

Prior
Instruction

Flags Before DA Result Before Adjustment
Added

Result After C Flag
AfterC H D [7...4] [3...0] [7...4] [3...0]

ADD or ADC 0 0 0 0-9 0-9 00 0-9 0-9 0

0 0 0 0-8 A-F 06 1-9 0-5 0

0 1 0 1-9 0-3 06 1-9 6-9 0

0 0 0 A-F 0-9 60 0-5 0-9 1

1 0 0 0-2 0-9 60 6-8 0-9 1

0 0 0 9-F A-F 66 0-5 0-5 1

0 1 0 A-F 0-3 66 0-5 6-9 1

1 0 0 0-2 A-F 66 6-9 0-5 1

1 1 0 0-3 0-3 66 6-9 6-9 1

SUB or SBC 0 0 1 0-9 0-9 00 0-9 0-9 0

0 1 1 0-8 6-F FA 0-8 0-9 0

1 0 1 7-F 0-9 A0 1-9 0-9 1

1 1 1 6-F 6-F 9A 0-9 0-9 1

OPC dst

OPC (Hex)
Address Mode

dst

40
41

R
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
DA
Decimal Adjust

Flags:

When the instruction is executed, the flags are set as follows:

Example: Addition is performed using the BCD values 15 and 27, the result should be 42. The sum actually
obtained is incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic.

When the result of the addition is stored in Register 5FH, the following statement adjusts this result so the
correct BCD representation is obtained.

DA 5FH
Op Code: 41 45

Register 5F now contains the value 42H. The C, Z, and S flags are set to 0.

C: 1 if a value is carried or borrowed during the prior addition or subtaction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

0001 0101 = 15H

+ 0010 0111 = 27H

0011 1100 = 3CH

0011 1100 = 3CH

+ 0000 0110 = 06H

0100 0010 = 42H
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
DA
Decimal Adjust

Example: A subtraction is performed on BCD values to subtract 17 from 25, the result should be 8. The result
is incorrect when standard binary subtraction is performed on the binary representations of the BCD numbers.

Register 45H contains the value 5FH. The result of the subtraction is stored in 5FH. The following statements
adjust the result so the correct BCD representation is obtained.

DA @45H
Op Code: 40 45

Register 5FH now contains the value 08H. The C, Z, and S flags are set to 0.

0010 0101 = 25H

+ 0001 0111 = 17H

0000 1110 = 0EH

0000 1110 = 0EH

+ 1111 1010 = FAH

0000 1000 = 08H
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
DEC
Decrement

Instruction Format:

DEC dst

Operation:

dst ← dst - 1

The contents of the destination operand are decremented by one.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Working register R10 contains 2AH. The following statement leaves the value 29H in working
register R10. The Z, V, and S flags are set to 0.

DEC R10
Op Code: 00 EA

Example: Register B3H contains CBH. Register CBH contains 01H. The following statement leaves the value
00H in Register CBH. The Z flag is set to 1, and the V and S flags are set to 0.

DEC @B3H
Op Code: 01 B3

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0.

V: 1 if arithmetic overflow occurs; otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

00
01

R
IR
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
DECW
Decrement Word

Instruction Format:

DECW dst

Operation:

dst ← dst - 1

The contents of the destination (which must be an even address) operand are decremented by one. The desti-
nation operand can be a Register Pair or a working register Pair.

Flags:

When the instruction is executed, the flags are set as follows:

Example:Register pair 30H and 31H contain the value 0AF2H. The statement leaves the value 0AF1H in
register pair 30H and 31H. The Z, V, and S flags are set to 0.

DECW 30H
Op Code: 80 30

Example: Working register R0 contains 30H. Register Pair 30H and 31H contain the value FAF3H. The
following statement leaves the value FAF2H in Register Pair 30H and 31H. The S flag is set, and the Z and
V flags are cleared.

DECW @R0
Op Code: 81 E0

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0

V: 1 if arithmetic overflow occurs; otherwise, 0

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

80
81

RR
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
DI
Disable Interrupts

Instruction Format:

DI

Operation:

IMASK (7) ← 0

Bit 7 of control register FBH (the Interrupt Mask Register) is reset to 0. All interrupts are disabled, although
they remain potentially enabled. For example, the Global Interrupt Enable is cleared, but not the individual
interrupt level enables.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Control register FBH contains 8AH (10001010B) (interrupts IRQ1 and IRQ3 are enabled). The
following statement sets control register FBH to 0AH (00001010B) and disables all interrupts.

DI
Op Code: 8F

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

8F
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
DJNZ
Decrement And Jump If Non-zero

Instruction Format:

DJNZ r, dst

Operation:

r ← r - 1;
If r ≠ 0, PC ← PC + dst

The specified working register serves as a counter and is decremented. If the contents of the specified working
register are not 0 after decrementing, then the relative address is added to the Program Counter (PC) and
control passes to the statement whose address is now in the PC. The range of the relative address is +127 to
–128. The original value of the PC is the address of the instruction byte following the DJNZ statement. When
the specified working register counter reaches 0, control falls through to the statement following the DJNZ
instruction.

Flags:

When the instruction is executed, the flags are set as follows:

Example: DJNZ is typically used to control a loop of instructions. In this example, 12 bytes are moved from
one buffer area in the register file to another. The steps involved are:

1. Load 12 into the counter (working register R6).

2. Set up the loop to perform the moves.

3. End the loop with a DJNZ instruction.

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

r OPC dst

OPC (Hex)
Address Mode

dst

rA
(r=0 to F)

RA
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
DJNZ
Decrement And Jump If Non-zero

The assembly listing required for this routine is as follows:

Assembly Op Code

LD R6, #12 6E 0C

LOOP: LD R9 %20(R6) C7 56 30

LD %14(R6), R9 D7 56 10

DJNZ R6, LOOP 6A F8
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
EI
Enable Interrupts

Instruction Format:

EI

Operation:

IMASK (7) ← 1

Bit 7 of Control Register FBH (the Interrupt Mask Register) is set to 1. This allows potentially enabled inter-
rupts to become enabled.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Control Register FBH contains 0AH (00001010) (interrupts IRQ1 and IRQ3 are selected). The
following statement sets Control Register FBH to 8AH (10001010B) enabling IRQ1 and IRQ3.

EI
Op Code: 9F

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

9F
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
HALT
Halt

Instruction Format:
HALT

Operation:

The HALT instruction turns off the internal CPU clock, but not the XTAL oscillation. The peripherals and
interrupt logic remain active. Operation can be restarted by an interrupt or a reset.

Flags:

When the instruction is executed, the flags are set as follows

Example: Assuming the Z8 is in normal operation, the following statements place the Z8 into HALT mode.

HALT
Op Codes: 7F

NOTE: Unlike the Z8, the Z8PLUS does not require a NOP before the HALT instruction.

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

7F
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
INC
Increment

Instruction Format:

INC dst

Operation:

dst ← dst + 1

The contents of the destination operand are incremented by one.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0.

V: 1 if arithmetic overflow occurs; otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

dst OPC

OPC dst

OPC (Hex)
Address Mode

dst

rE
r = 0–15

r

20
21

R
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
INC
Increment

Example: Working register R10 contains 2AH. The following statement leaves the value 2BH in working
register R10. The Z, V, and S flags are set to 0.

INC R10
Op Code: AE

Example: Register B3H contains CBH. The following statement leaves the value CCH in register CBH. The
S flag is set to 1, and the Z and V flags are set to 0.

INC B3H
Op Code: 20 B3

Example: Register B3H contains CBH. Register CBH contains FFH The following statement leaves the value
00H in register CBH. The Z flag is set to 1, and the V and S flags are set to 0.

INC @B3H
Op Code: 21 B3
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
INCW
Increment Word

Instruction Format:
INCW dst

Operation:

dst ← dst + 1

The contents of the destination (which must be an even address) operand is incremented by one. The destina-
tion operand can be a Register Pair or a working register Pair.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Register pairs 30H and 31H contain the value 0AF2H. The following statement leaves the value
0AF3H in register pair 30H and 31H. The Z, V, and S flags are set to 0.

INCW 30H
Op Code: A0 30

Example: Working register R0 contains 30H. Register pairs 30H and 31H contain the value FAF3H. The
following statement leaves the value FAF4H in register pair 30H and 31H. The S flag is set, and the Z and V
flags are set to 0.

INCW @R0
Op Code: A1 E0

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1 (negative); otherwise, 0.

V: 1 if arithmetic overflow occurs; otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

A0
A1

RR
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
IRET
Interrupt Return

Instruction Format:

IRET

Operation:

FLAGS ← @SP
SP ← SP + 1
PC ← @SP
SP ← SP + 2
IMR (7) ← 1

This instruction is issued at the end of an interrupt service routine. It restores the Flag Register (Control
Register FCH) and the PC. It also re-enables any interrupts that are potentially enabled.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Stack Pointer Low (register FFH) currently contains the value 45H. Register 45H contains the
value 00H. Register 46H contains 6FH. Register 47 Contains E4H. The following statement restores the
Flags Register (FCH) with the value 00H, restores the PC with the value 6FE4H, re-enables the interrupts,
and sets the Stack Pointer Low to 48H. The next instruction to be executed is at location 6FE4H.

IRET
Op Code: BF

C: The value prior to the issuance of the interrupt.

Z: The value prior to the issuance of the interrupt.

S: The value prior to the issuance of the interrupt.

V: The value prior to the issuance of the interrupt.

D: The value prior to the issuance of the interrupt.

H: The value prior to the issuance of the interrupt.

OPC

OPC (Hex)

BF
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
JP
Jump

Instruction Format:

JP cc, dst

Operation:

If condition code is true, then PC ← dst

A conditional jump (JP) transfers program control to the destination address if the condition specified by cc
is true. Otherwise, the instruction following the JP instruction is executed. See page 3-8 for a list of condition
codes.

NOTE: Op Code 30H (JP IRR) is unconditional only.

An unconditional jump simply replaces the contents of the Program Counter with the contents of the register
pair specified by the destination operand. Program Control then passes to the instruction addressed by the PC.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

cc OPC dst

OPC dst

OPC (Hex)
Address Mode

dst

ccD DA

(cc = 0 to F)

30 IRR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
JP
Jump

Example: The Carry flag is 1. The following statement replaces the contents of the Program Counter with
1520H and transfers program control to that location. If the Carry flag had not been 1, control would have
fallen through to the statement following the JP instruction.

JP C, 1520H
Op Code: 7D 15 20

Example:Working register pair RR2 contains the value 3F45H. The following statement replaces the
contents of the PC with the value 3F45H and transfers program control to that location.

JP @RR2
Op Code: 30 E2
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
JR
Jump Relative

Instruction Format:

JR cc, dst

Operation:

If cc is true, PC ← PC + dst

If the condition specified by the cc is true, the relative address is added to the PC and control passes to the
instruction located at the address specified by the PC (See page 3-8 for a list of condition codes). Otherwise,
the instruction following the JR instruction is executed. The range of the relative address is +127 to
-128, and the original value of the PC is taken to be the address of the first instruction byte following the JR
instruction.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The result of the last arithmetic operation executed is negative. The next nine bytes are skipped
with the following statement. If the result is not negative, execution continues with the instruction following
the JR instruction.

JR MI, 9
Op Code: 5B 09

Example: A short form of a jump -45 is:

JR -45
Op Code: 8B D3

The instruction jumps backwards 45 bytes, unconditionally. The condition code is blank in this case, and is
assumed to be always true.

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

cc OPC dst

OPC (Hex)
Address Mode

dst

ccB RA

(cc=0 to F)
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
LD
Load

Instruction Format:

LD dst, src

dst OPC src

src OPC dst

OPC dst src

OPC src dst

OPC dst src

OPC src dst

OPC dst X src

OPC src X dst

*For OPC r9H, only a full 8-bit register can be
 used. The =L/2* assember automatically uses
 the r8 Op Code for an instruction like:
 LD R0,R1.

OPC (Hex)
Address Mode

dst src

rC
r8

r
r

IM
R

r9
r=0 to F

R* r

E3
F3

r
Ir

Ir
r

E4
E5

R
R

R
IR

E6
E7

R
IR

IM
IM

F5 IR R

C7 r X

D7 X r
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
LD
Load

Operation:

dst ← src

The contents of the source operand are loaded into the destination operand. The contents of the source
operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The following statement loads the value 34H into working register R15.

LD R15, #34H
Op Code: FC 34

Example: Register 34H contains the value FCH. The following statement loads the value FCH into working
register R14. The contents of register 34H are not changed.

LD R14, 34H
Op Code: F8 34

Example: Working register R14 contains the value 45H. The following statement loads the value 45H into
register 34H. The contents of working register R14 are not changed.

LD 34H, R14
Op Code: E9 34

Example: Working register R12 contains the value 34H. Register 34H contains the value FFH. The
following statement loads the value FFH into working register R13. The contents of working register R12
and register 34H are not changed.

LD R13, @R12
Op Code: E3 DC

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
LD
Load

Example: Working register R13 contains the value 45H. Working register R12 contains the value 00H. The
following statement loads the value 00H into register 45H. The contents of working register R12 and
working register R13 are not changed.

LD @R13, R12
Op Code: F3 DC

Example: Register 45H contains the value CFH. The following statement loads the value CFH into register
34H. The contents of register 45H are not changed.

LD 34H, 45H
Op Code: E4 45 34

Example: Register 45H contains the value CFH. Register CFH contains the value FFH. The following state-
ment loads the value FFH into register 34H. The contents of register 45H and register CFH are not changed.

LD 34H, @45H
Op Code: E5 45 34

Example: The following statement loads the value A4H into Register 34H.

LD 34H, #0A4H
Op Code: E6 34 A4

Example: Working register R14 contains the value 7FH. The following statement loads the value FCH into
Register 7FH. The contents of working register R14 are not changed.

LD @R14, #0FCH
Op Code: E7 EE FC
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
LD
Load

Example: Register 34H contains the value CFH. Register 45H contains the value FFH. The following state-
ment loads the value FFH into register CFH. The contents of register 34H and register 45H are not changed.

LD @34H, 45H
Op Code: F5 45 34

Example: Working register R0 contains the value 08H. Register 2CH (24H + 08H = 2CH) contains the value
4FH. The following statement loads working register R10 with the value 4FH. The contents of working
register R0 and Register 2CH are not changed.

LD R10, 24H(R0)
Op Code: C7 A0 24

Example: Working register R0 contains the value 0BH. Working register R10 contains 03H. The following
statement loads the value 03H into register FBH (F0H + 0BH = FBH). Since this is the Interrupt Mask
Register, the LOAD statement has the effect of enabling IRQ0 and IRQ1. The contents of working registers
R0 and R10 are unchanged by the load.

LD F0H(R0), R10
Op Code: D7 A0 F0
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
LDC
Load Constant

Instruction Format:

LDC dst, src

Operation:

dst ← src

This instruction is used to load a byte constant from program memory into a working register, or vice versa.
The address of the program memory location is specified by a working register pair. The contents of the
source operand are not changed.

Flags

When the instruction is executed, the flags are set as follows:

Example: Working register pairs R6 and R7 contain the value 30A2H and program memory location 30A2H
contains the value 22H. The following statement loads the value 22H into working register R2. The value of
program memory location 30A2H is unchanged by the load.

LDC R2, @RR6
Op Code: C2 26

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC dst src

OPC
(Hex)

Address Mode
dst src

C2 r Irr

D2 Irr r
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
LDC
Load Constant

Example: Working register R2 contains the value 22H. Working register pair R6 and R7 contains the value
10A2H. The following statement loads the value 22H into program memory location 10A2H. The value of
working register R2 is unchanged by the load.

LDC @RR6, R2
Op Code: D2 26

NOTE: This instruction format is valid only for MCUs which can write to program memory.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
LDCI
Load Constant Auto Increment

Instruction Format:

LDCI dst, src

Operation:

dst ← src
r ← r + 1
rr ← rr + 1

This instruction is used for block transfers of data between program memory and the Register File. The
address of the program memory location is specified by a working register Pair, and the address of the
Register File location is specified by working register. The contents of the source location are loaded into the
destination location. Both addresses in the working registers are then incremented automatically. The
contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC dst src

OPC
(Hex)

Address Mode
dst src

C3 Ir Irr

D3 Irr Ir
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
LDCI
Load Constant Auto-increment

Example: Working register pair R6-R7 contains 30A2H, program memory location 30A2H and 30A3H
contain 22H and BCH respectively, and working register R2 contains 20H. The following statement loads the
value 22H into Register 20H. working register Pair RR6 is incremented to 30A3H and working register R2
is incremented to 21H.

LDCI @R2, @RR6
Op Code: C3 26

A second statement loads the value BCH into register 21H. working register pair RR6 is incremented to
30A4H and working register R2 is incremented to 22H.

LDCI @R2, @RR6
Op Code: C3 26

Example: Working register R2 contains 20H. Register 20H contains 22H. Register 21H contains BCH.
Working register pair R6-R7 contains 30A2H. The following statement loads the value 22H into program
memory location 30A2H. working register R2 is incremented to 21H and working register Pair R6-R7 is
incremented to 30A3H.

LDCI @RR6, @R2
Op Code: D3 26

A second statement loads the value BCH into program memory location 30A3H. working register R2 is incre-
mented to 22H and working register pair R6-R7 is incremented to 30A4H.

LDCI @RR6, @R2
Op Code: D3 26
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
NOP
No Operation

Instruction Format:

NOP

Operation:

No action is performed by this instruction. It is typically used for timing delays or clearing the pipeline.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

FF
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
OR
Logical OR

Instruction Format:

OR dst, src

Operation:

dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the destination
operand. The contents of the source operand are not changed. The OR operation stores a 1 bit whenever either
of the corresponding bits in the two operands is a 1. Otherwise, a 0 bit is stored.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode
dst src

42
43

r
r

r
Ir

44
45

R
R

R
IR

46
47

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
OR
Logical OR

Example: Working register R1 contains 34H (00111000B). Working register R14 contains 4DH
(10001101). The following statement leaves the value BDH (10111101B) in working register R1. The S
flag is set to 1, and the Z and V flags are set to 0.

OR R1, R14
Op Code: 42 1E

Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register
7B contains 6AH (01101010B). The following statement leaves the value FBH (11111011B) in working
register R4. The S flag is set to 1, and the Z and V flags are set to 0.

OR R4, @R13
Op Code: 43 4D

Example: Register 3AH contains the value F5H (11110101B. Register 42H contains the value 0AH
(00001010B). The following statement leaves the value FFH (11111111B) in register 3AH. The S flag is
setto 1, and the Z and V flags are set to 0.

OR 3AH, 42H
Op Code: 44 42 3A

Example: Working register R5 contains 70H (01110000B). Register 45H contains 3AH. Register 3AH
contains 7FH (01111111B). The following statement leaves the value 7FH (01111111B) in working
register R5. The Z, V, and S flags are set to 0.

OR R5, @45H
Op Code: 45 45 E5

Example: Register 7AH contains the value F3H (11110111B). The following statement leaves the value
F3H (11110111B) in register 7AH. The S flag is set to 1, and the Z and V flags are set to 0.

OR 7AH, #F0H
Op Code: 46 7A F0

Example: Working register R3 contains the value 3EH. Register 3EH contains the value 0CH
(00001100B). The following statement leaves the value 0DH (00001101B) in register 3EH. The Z, V, and
S flags are set to 0.

OR @R3, #05H
Op Code: 57 E3 05
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
POP
Pop

Instruction Format:

POP dst

Operation:

dst ← @SP
SP ← SP + 1

The contents of the location specified by the Stack Pointer (SP) are loaded into the destination operand. The
SP is then incremented automatically.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The SP (Control Registers FEH and FFH) contains the value 70H. Register 70H contains 44H.
The following statement loads the value 44H into register 34H. After the POP operation, the SP contains
71H. The contents of register 70 are not changed.

POP 34H
Op Code: 50 34

Example: The SP (Control Registers FEH and FFH) contains the value 1000H. Memory location 1000H
contains 55H. Working register R6 contains 22H. The following statement loads the value 55H into register
22H. After the POP operation, the SP contains 1001H. The contents of working register R6 are not changed.

POP @R6
Op Code: 51 E6

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

50
51

R
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
PUSH
Push

Instruction Format:

PUSH src

Operation:

SP ← SP - 1
@SP ← src

The contents of the SP (stack pointer) are decremented by one. Then, the contents of the source operand are
loaded into the location addressed by the updated SP, adding a new element to the stack.

Flags

:When the instruction is executed, the flags are set as follows:

Example: The SP contains 1001H. The following statement stores the contents of Register FCH (the Flag
Register) in location 1000H. After the PUSH operation, the SP contains 1000H.

PUSH FCH
Op Code: 70 FC

Example: The SP contains 61H. Working register R4 contains FCH. The following statement stores the
contents of register FCH (the Flag Register) in location 60H. After the PUSH operation, the SP contains 60H.

PUSH @R4
Op Code: 71 E4

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

70
71

R
IR
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
RCF
Reset Carry Flag

Instruction Format:

RCF

Operation:

C ← 0

The C flag is reset to 0, regardless of its previous value.

Flags:

 When the instruction is executed, the flags are set as follows:

Example: The C flag is currently set to 1. The following statement resets the Carry flag to 0.

RCF
Op Code: CF

C: 0

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

CF
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
RET
Return

Instruction Format:

RET

Operation:

PC ← @SP
SP ← SP + 2

This instruction is used to return from a procedure entered by a CALL instruction. The contents of the location
addressed by the stack pointer (SP) are popped into the Program Control. The next statement executed is the
one addressed by the new contents of the PC. The stack pointer is also incremented by 2.

Flags:

When the instruction is executed, the flags are set as follows:

NOTE: Each PUSH instruction executed within the subroutine should be countered with a POP instruction
in order to guarantee the SP is at the correct location when the RET instruction is executed.
Otherwise the wrong address is loaded into the PC and the program does not operate as desired.

Example: SP contains 200H. Memory location 200H contains 18H. Location 201H contains B5H. The
following statement leaves the value 202H in the SP, and the PC contains 18B5H, the address of the next
instruction to be executed.

RET
Op Code: AF

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

AF
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
RL
Rotate Left

Instruction Format:

RL dst

Operation:

C ← dst(7)
dst(0) ← dst(7)
dst(1) ← dst(0)
dst(2) ← dst(1)
dst(3) ← dst(2)
dst(4) ← dst(3)
dst(5) ← dst(4)
dst(6) ← dst(5)
dst(7) ← dst(6)

The contents of the destination operand are rotated left by one bit position. The value from bit 7 is moved to
the bit 0 position and also into the Carry flag.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if the bit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to
1).

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

90
91

R
IR

C D7 D6 D5 D4 D3 D2 D1 D0
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
RL
Rotate Left

Example: The contents of register C6H are 88H (10001000B). The following statement leaves the value
11H (00010001B) in register C6H. The C and V flags are setto 1, and the S and Z flags are set to 0.

RL C6H
Op Code: 80 C6

Example: The contents of register C6H are 88H. The contents of register 88H are 44H (01000100B). The
following statement leaves the value 88H in register 88H (10001000B). The S and V flags are set to 1, and
the C and Z flags are set to 0.

RL @C6H
Op Code: 81 C6
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
RLC
Rotate Left Through Carry

Instruction Format:

RLC dst

Operation:

C ← dst(7)
dst(0) ← C
dst(1) ← dst(0)
dst(2) ← dst(1)
dst(3) ← dst(2)
dst(4) ← dst(3)
dst(5) ← dst(4)
dst(6) ← dst(5)
dst(7) ← dst(6)

The contents of the destination operand along with the C flag are rotated left by one bit position. The initial
value of bit 7 becomes the value of the C flag and the previous value of the C flag becomes the value of bit 0.

OPC dst

OPC (Hex)
Address Mode

dst

10
11

R
IR

C D7 D6 D5 D4 D3 D2 D1 D0
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
RLC
Rotate Left Through Carry

Flags:

When the instruction is executed, the flags are set as follows:

Example: The C flag is reset. Register C6 contains 8F (10001111B). The following statement leaves
register C6 with the value 1EH (00011110B). The C and V flags are set to 1, and S and Z flags are set to 0.

RLC C6
Op Code: 10 C6

Example: The C flag is reset. Working register R4 contains C6H. Register C6 contains 8F (10001111B).
The following statement leaves register C6 with the value 1EH (00011110B). The C and V flags are set to
1, and S and Z flags are set to 0.

RLC @R4
Op Code: 11 E4

C: 1 if the bit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to
1).

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
RR
Rotate Right

Instruction Format:

RR dst

Operation:

C ← dst(0)
dst(0) ← dst(1)
dst(1) ← dst(2)
dst(2) ← dst(3)
dst(3) ← dst(4)
dst(4) ← dst(5)
dst(5) ← dst(6)
dst(6) ← dst(7)
dst(7) ← dst(0)

The contents of the destination operand are rotated to the right by one bit position. The initial value of bit 0
becomes the value of bit 7 and the C flag.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if the value rotated from the least significant bit position (bit 1) was 1.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

E0
E1

R
IR

D7 D6 D5 D4 D3 D2 D1 D0 C
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
RR
Rotate Right

Example: The contents of working register R6 are 31H (00110001B). The following statement leaves the
value 98H (10011000B) in working register R6. The C, V, and S flags are set to 1, and the Z flag is set to 0.

RR R6
Op Code: E0 E6

Example: The contents of register C6 are 31H. The contents of register 31H are 7EH (01111110B). The
following statement leaves the value 4FH (00111111B) in register 31H. The C, Z, V, and S flags are set to 0.

RR @C6
Op Code: E1 C6
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
RRC
Rotate Right Through Carry

Instruction Format:

RRC dst

Operation:

C ← dst(0)
dst(0) ← dst(1)
dst(1) ← dst(2)
dst(2) ← dst(3)
dst(3) ← dst(4)
dst(4) ← dst(5)
dst(5) ← dst(6)
dst(6) ← dst(7)
dst(7) ← C

The contents of the destination operand with the C flag are rotated right by one bit position. The value of the
C flag becomes the value of bit 7; the value of bit 0 becomes the value of the C flag .

OPC dst

OPC (Hex)
Address Mode

dst

C0
C1

R
IR

D7 D6 D5 D4 D3 D2 D1 D0 C
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
RRC
Rotate Right Through Carry

Flags:

When the instruction is executed, the flags are set as follows:

Example: The contents of register C6H are DDH (11011101B). The C flag is 0. The following statement
leaves the value 6EH (01101110B) in register C6H. The C and V flags are set to 1, and the Z and S flags are
set to 0.

RRC C6H
Op Code: C0 C6

Example: The contents of register 2C are EDH. The contents of register EDH is 02H (00000010B. The C
flag is 0. The following statement leaves the value 01H (00000001B) in register EDH. The C, Z, S, and V
flags are reset to 0.

RRC @2CH
Op Code: C1 2C

C: 1 if the bit rotated from the least significant bit position was 1 (that is, bit 0 was 1).

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 1 if an arithmetic overflow occurs (the sign of the destination operand changed during rotation);
otherwise, 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*

tiple
ands

).

t is
SBC
Subtract with Carry

Instruction Format:

SBC dst, src

Operation:

dst ← dst - src - C

The value of the source operand, and the value of the C flag, are subtracted from the destination operand. The
result is stored in the destination operand. The contents of the source operand do not change. Subtraction is
performed by adding the two’s complement of the source operand to the destination operand. In mul
precision arithmetic, this instruction permits the carry (borrow) from the subtraction of low-order oper
to be subtracted from the subtraction of high-order operands.

Flags:

When the instruction is executed, the flags are set as follows:

C: 0 if a value is carried from the most significant bit of the result; otherwise, 1 (indicating a borrow

Z: 1 if the result is 0; otherwise, 0.

V: 1 if an arithmetic overflow occurs (the operands have opposite signs, and the sign of the resul
the same as the sign of the source); otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

H: 0 if if a value is carried from the most significant bit of the low-order four bits of the result;
otherwise, 1 (indicating a borrow).

D: 1.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

32
33

r
r

r
Ir

34
35

R
R

R
IR

36
37

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
SBC
Subtract with Carry

Example: Working register R3 contains 16H. The C flag is set to 1. Working register R11 contains 20H.
The following statement leaves the value F5H in working register R3. The C, S, and D flags are set to 1, and
the Z, V, and H flags are set to 0.

SBC R3, R11
Op Code: 32 3B

Example: Working register R15 contains 16H. The C flag is not set. Working register R10 contains 20H.
Register 20H contains 11H. The following statement leaves the value 05H in working register R15. The D
flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SBC R16, @R10
Op Code: 33 FA

Example: Register 34H contains 2EH. The C flag is set. Register 12H contains 1BH. The following statement
leaves the value 12H in register 34H. The D flag is set, and the C, Z, S, V, and H flags are cleared.

SBC 34H, 12H
Op Code: 34 12 34

Example: Register 4BH contains 82H. The C flag is set. Working register R3 contains 10H. Register 10H
contains 01H. The following statement leaves the value 80H in register 4BH. The D and S flags are set to 1,
and the C, Z, V, and H flags are set to 0.

SBC 4BH, @R3
Op Code: 35 E3 4B

Example: Register 6CH contains 2AH. The C flag is not set. The following statement leaves the value 27H
in register 6CH. The D flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SBC 6CH, #03H
Op Code: 36 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The C flag is set. The following statement
leaves the value 49H in register 5FH. The D flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SBC @D4H, #02H
Op Code: 37 D4 02
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
SCF
Set Carry Flag

Instruction Format:

SRC

Operation:

C ← 1

The C flag is set to 1, regardless of its previous value.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The C flag is currently 0. The following statement sets the Carry flag to 1.

SCF
Op Code: DF

C 1.

Z The value set by the preceding instruction.

S The value set by the preceding instruction.

V The value set by the preceding instruction.

D The value set by the preceding instruction.

H The value set by the preceding instruction.

OPC

OPC (Hex)

DF
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
SRA
Shift Right Arithmetic

Instruction Format:

SRA dst

Operation:

C ← dst(0)
dst(0) ← dst(1)
dst(1) ← dst(2)
dst(2) ← dst(3)
dst(3) ← dst(4)
dst(4) ← dst(5)
dst(5) ← dst(6)
dst(6) ← dst(7)
dst(7) ← dst(7)

An arithmetic right shift by one bit position is performed on the destination operand. Bit 0 replaces the C flag.
The value of Bit 7 (the sign bit) is unchanged.Bit 6 becomes the same as the value of bit 7. The result is a
signed divide by two holding the half-bit remainder stored in the Carry (C) flag.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if the value rotated from the least-significant bit (bit 0) position was 1.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

D0
D1

R
IR

D7 D6 D5 D4 D3 D2 D1 D0 C
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
SRA
Shift Right Arithmetic

Example:The contents of working register R6 are 31H (00110001B). The following statement leaves the
value 98H (00011000B) in working register R6. The C flag is set to 1, and the Z, V, and S flags are set to 0.

SRA R6
Op Code: D0 E6

Example: Register C6 contains the value DFH. Register DFH contains the value B8H (10111000B). The
following statement leaves the value DCH (11011100B) in Register DFH. The C, Z, and V flags are reset to
0, and the S flag is set to 1.

SRA @C6
Op Code: D1 C6
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
SRP
Set Register Pointer

Instruction Format:

SRP src

Operation:

RP ← src

The specified value is loaded into the Register Pointer (RP) Control Register (FDH). Bits 7-4 determine the
working register group. Bits 3-0 selects the Memory Page. Addressing non-existent working register groups
and memory pages results in undefined behavior.

Table 3-17. Register Pointers, Working Register Groups, and Actual Registers

Register Pointer (FDH)
Contents (Bin)

Working Register Group
(Hex)

Actual Registers
(Hex)

1111 0000 F F0-FF

1110 0000 E E0-EF

1101 0000 D D0-DF

1100 0000 C C0-CF

1011 0000 B B0-BF

1010 0000 A A0-AF

1001 0000 9 90-9F

1000 0000 8 80-8F

0111 0000 7 70-7F

0110 0000 6 60-6F

0101 0000 5 50-5F

0100 0000 4 40-4F

0011 0000 3 30-3F

0010 0000 2 20-2F

0001 0000 1 10-1F

0000 0000 0 00-0F

OPC dst

OPC (Hex)
Address Mod

dst

31 IM
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
SRP
Set Register Pointer

Flags:

When the instruction is executed, the flags are set as follows:

Example: The following statement SRP %70 assigns registers 070H through 07FH to be the current
working register group, and, therefore, accessable as R0 through R15 in four bit addressing modes. The
active memory page is set to page 0, and all eight-bit addressed register accesses are on page 0.

SRP %70
Op Code: 31 F0

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
STOP
Stop

Instruction Format:

STOP

Operation:

This instruction turns off the internal system clock (SCLK) and external crystal (XTAL) oscillator, and draws
only standby current. The STOP mode is terminated by a RESET or Stop Mode Recovery (SMR) which causes
the processor to restart the application program at address 0020H. The waken up source can be determined
by reading the FLAGS register, specifically the SMR and WDT flags (see page 3–5 for more information).

Flags:

When the instruction is executed, the flags are set as follows:

Example: The following statements place the Z8 into STOP mode.

STOP
Op Codes: 6F

NOTE: Unlike the Z8, the Z8PLUS does not require a NOP before the STOP instruction.

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

6F
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*

e two’s

ow.

t has

se,
SUB
Subtract

Instruction Format:

SUB dst, src

Operation:

dst ← dst - src

The source operand is subtracted from the destination operand and the result is stored in the destination
operand. The contents of the source operand are not changed. Subtraction is performed by adding th
complement of the source operand to the destination operand.

Flags:

When the instruction is executed, the flags are set as follows:

C: 0 if a value is carried from the most significant bit of the result; otherwise, 1, indicating a borr

Z: 1 if the result is 0; otherwise, 0.

V: 1 if arithmetic overflow occurred (if the operands have opposite sign and the sign of the resul
the same as the source); reset otherwise.

S: 1 if the result is negative; otherwise, 0.

H: 0 if there is a carry from the most significant bit of the low-order four bits of the result; otherwi
1, indicating a borrow.

D: 1.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

22
23

r
r

r
Ir

24
25

R
R

R
IR

26
27

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
SUB
Subtract

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
leaves the value F6H in working register R3. The C, S, and D flags are set to 1, and the Z, V, and H flags are
set to 0.

SUB R3, R11
Op Code: 22 3B

Example: Working register R15 contains 16H. Working register R10 contains 20H. Register 20H contains
11H. The following statement leaves the value 05H in working register R15. The D flag is set to 1, and the
C, Z, S, V, and H flags are set to 0.

SUB R16, @R10
Op Code: 23 FA

Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement leaves the value
13H in register 34H. The D flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SUB 34H, 12H
Op Code: 24 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains 01H. The
following statement leaves the value 81H in register 4BH. The D and S flags are set to 1, and the C, Z, V, and
H flags are set to 0.

SUB 4BH, @R3
Op Code: 25 E3 4B

Example: Register 6CH contains 2AH. The following statement leaves the value 27H in register 6CH. The D
flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SUB 6CH, #03H
Op Code: 26 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The following statement leaves the value
4AH in register 5FH. The D flag is set to 1, and the C, Z, S, V, and H flags are set to 0.

SUB @D4H, #02H
Op Code: 17 D4 02
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
SWAP
Swap Nibbles

Instruction Format:

SWAP dst

Operation:

dst(7-4) ↔ dst(3-0)

The contents of the lower four bits and upper four bits of the destination operand are swapped.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Register BCH contains B3H (10110011B). The following statement leaves the value 3BH
(00111011B) in register BCH. The Z and S flags are set to 0.

SWAP B3H
Op Code: F0 B3

Example: Working register R5 contains BCH and register BCH contains B3H (10110011B). The following
statement leaves the value 3BH (00111011B) in register BCH. The Z and S flags are set to 0.

SWAP @R5H
Op Code: F1 E5

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst

OPC (Hex)
Address Mode

dst

F0
F1

R
IR
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
TCM
Test Complement Under Mask

Instruction Format:

TCM dst, src

Operation:

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logical 1 value. The bits to be tested are
specified by setting a 1 bit in the corresponding bit position in the source operand (the mask). The TCM
instruction complements the destination operand, and then perforoms a logingal AND operation using ANDs
with the mask (source operand). The Zero (Z) flag can then be read to check the result. If the Z flag is set,
then the tested bits were 1. When the TCM operation is complete, the destination and source operands still
contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows::

Example: Working register R3 contains 45H (01000101B). Working register R7 contains the value 01H
(00000001B) (bit 0 is being tested if it is 1). The following statement sets the Z flag indicating bit 0 in the
destination operand is 1. The V and S flags are set to 0.

TCM R3, R7
Op Code: 62 37

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

62
63

r
r

r
Ir

64
65

R
R

R
IR

66
67

R
IR

IM
IM
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
TCM
Test Complement Under Mask

Example: Working register R14 contains the value F3H (11110011B). Working register R5 contains CBH.
Register CBH contains 88H (10001000B) (bit 7 and bit 3 are tested if they are 1). The following statement
resets the Z flag to 0, because bit 3 in the destination operand is not a 1. The V and S flags are also set to 0.

TCM R14, @R5
Op Code: 63 E5

Example: Register D4H contains the value 04H (000001000B). Working register R0 contains the value
80H (10000000B) (bit 7 istested if it is 1). The following statement resets the Z flag to 0, because bit 7 in
the destination operand is not a 1. The S flag is set to 1, and the V flag is set to 0.

TCM D4H, R0
Op Code: 64 E0 D4

Example: Register DFH contains the value FFH (11111111B). Register 07H contains the value 1FH.
Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit 0 are tested if
they are 1), The following statement sets the Z flag to 1 indicating the tested bits in the destination operand
are 1. The S and V flags are set to 0.

TCM DFH, @07H
Op Code: 65 07 DF

Example: Working register R13 contains the value F2H (11110010B). The following statement tests bit 1
of the destination operand for 1. The Z flag is set to 1 indicating bit 1 in the destination operand was 1. The
S and V flags are set to 0.

TCM R13, #02H
Op Code: 66 ED, 02

Example: Register 5DH contains A0H. Register A0H contains 0FH (00001111B). The statement tests bit 4
of the Register A0H for 1. The Z flag is reset to 0 indicating bit 1 in the destination operand was not 1. The
S and V flags are set to 0.

TCM @5D, #10H
Op Code: 67 5D 10
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
TM
Test Under Mask

Instruction Format:

TM dst, src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logical 0 value. The bits to be tested are
specified by setting a 1 bit in the corresponding bit position in the source operand (the mask). The TM instruc-
tion ANDs the destination operand with the mask (the source operand). The Zero (Z) flag can then be read to
check the result. If the Z flag is set, then the tested bits were 0. When the TM operation is complete, the desti-
nation and source operands still contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows:

Example: Working register R3 contains 45H (01000101B. Working register R7 contains the value 02H
(00000010B) (bit 1 is tested if it is 0). The following statement sets the Z flag to 1 indicating bit 1 in the
destination operand is 0. The V and S flags are set to 0.

TM R3, R7
Op Code: 72 37

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

72
73

r
r

r
Ir

74
75

R
R

R
IR

76
77

R
IR

IM
IM
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
TM
Test Under Mask

Example: Working register R14 contains the value F3H (11110011B). Working register R5 contains CBH.
Register CBH contains 88H (10001000B) (bit 7 a bit 3 are tested if they are 0). The following statement
resets the Z flag to 0, because bit 7 in the destination operand is not a 0. The S flag is set to 1, and the V flag
is set to 0.

TM R14, @R5
Op Code: 73 E5

Example: Register D4H contains the value 08H (00001000B). Working register R0 contains the value 04H
(00000100B) (bit 2 is tested if it is 0). The statement sets the Z flag to 1, because bit 2 in the destination
operand is a 0. The S and V flags are set to 0.

TM D4H, R0
Op Code: 74 E0 D4

Example: Register DFH contains the value 00H (00000000B). Register 07H contains the value 1FH.
Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit 0 are tested if
they are 0). The following statement sets the Z flag to 1, indicating the tested bits in the destination operand
are 0. The S is set to 1, and the V flag is set to 0.

TM DFH, @07H
Op Code: 75 07 DF

Example: Working register R13 contains the value F1H (11110001B). The following statement tests bit 1
of the destination operand for 0. The Z flag is set to 1, indicating bit 1 in the destination operand was 0. The
S and V flags are set to 0.

TM R13, #02H
Op Code: 76 ED, 02

Example: Register 5DH contains A0H. Register A0H contains 0FH (00001111B). The following statement
tests bit 4 of the register A0H for 0. The Z flag is set to 1, indicating bit 4 in the destination operand was 0.
The S and V flags are set to 0.

TM @5D, #10H
Op Code: 77 5D 10
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
WDT
Watch-Dog Timer

Instruction Format:

WDT

Operation:

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the device if it reaches its terminal
count. Each execution of the WDT instruction refreshes the timer and prevents the WDT from timing out.

Flags:

When the instruction is executed, the flags are set as follows:

Example: The WDT is enabled. The following statement refreshes the Watch-Dog Timer.

WDT
Op Code:5F

C: The value set by the preceding instruction.

Z: The value set by the preceding instruction.

S: The value set by the preceding instruction.

V: The value set by the preceding instruction.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC

OPC (Hex)

5F
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
XOR
Logical Exclusive OR

Instruction Format:

XOR dst, src

Operation:

dst ← dst XOR src

The source operand performs a logical EXCLUSIVE ORed operation, which stores a 1 in the destination
operand whenever the corresponding bits in the two operands are different. The destination operand is set to
1; otherwise, a 0 is stored. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.

Z: 1 if the result is 0; otherwise, 0.

S: 1 if bit 7 of the result is 1; otherwise, 0.

V: 0.

D: The value set by the preceding instruction.

H: The value set by the preceding instruction.

OPC dst src

OPC src dst

OPC dst src

OPC (Hex)
Address Mode

dst src

B2
B3

r
r

r
Ir

B4
B5

R
R

R
IR

B6
B7

R
IR

IM
IM
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* #FFTGUU�5RCEG
XOR
Logical Exclusive OR

Example: Working register R1 contains 38H (00111000B). Working register R14 contains 8DH
(10001101B). The following statement leaves the value B5H (10110101B) in working register R1. The
Z, and V flags are set to 0, and the S flag is set to 1.

XOR R1, R14
Op Code: B2 1E

Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register
7B contains 6AH (01101010B). The following statement leaves the value 93H (10010011B) in working
register R4. The S flag is set to 1, and the Z and V flags are set to 0.

XOR R4, @R13
Op Code: B3 4D

Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH
(00001010B). The following statement leaves the value FFH (11111111B) in register 3AH. The S flag is
set to 1, and the C and V flags are set to 0.

XOR 3AH, 42H
Op Code: B4 42 3A

Example: Working register R5 contains F0H (11110000B). Register 45H contains 3AH. Register 3A
contains 7F (01111111B). The statement leaves the value 8FH (10001111B) in working register R5. The
S flag is set to 1, and the C and V flags are set to 0.

XOR R5, @45H
Op Code: B5 45 E5

Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value
07H (00000111B) in register 7AH. The Z, V, and S flags are set to 0.

XOR 7AH, #F0H
Op Code: B6 7A F0

Example: Working register R3 contains the value 3EH. Register 3EH contains the value 6CH
(01101100B). The following statement leaves the value 69H (01101001B) in register 3EH. The Z, V, and
S flags are set to 0.

XOR @R3, #05H
Op Code: B7 E3 05
7/�������<�:���� � ��

75'4 5�/#07#.

%*#26'4��
+06'447265
INTRODUCTION

The Z8PLUS core allows 15 different interrupts from a variety of sources:

� external inputs

� on-chip peripherals

� software

Interrupts can be masked by using the Interrupt Mask Register. All interrupts can be globally disabled by
setting the master Interrupt Enable, bit 7 in the Interrupt Mask Register, to 0, with a Disable Interrupt (DI)
instruction. Interrupts are globally enabled by setting bit 7 to 1 with an Enable Interrupt (EI) instruction.

There are four interrupt control registers: the Interrupt Request Registers (IREQ and IREQ2) and the Inter-
rupt Mask registers (IMASK and IMASK2). Figure 4-1 shows addresses and identifiers for the interrupt
control registers. Figure 4-2 is a block diagram showing the Interrupt Mask and Interrupt Priority logic.

Figure 4-1. Interrupt Control Register Addresses and Identifiers

Register HEX

 Interrupt Mask

 Interrupt Request

Identifier

0FBH

0FAH

IMASK

IREQ

 Interrupt Mask 2

 Interrupt Request 2

0F9H

0F8H

IMASK2

IREQ2
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
The Z8PLUS MCU family supports both vectored and polled interrupt handling. Details on vectored and polled
interrupts can be found later in this chapter.

Figure 4-2. Interrupt Block Diagram

NOTE: See the selected Z8PLUS MCU’s product specification for the exact interrupt sources supported.

 0FBH

0FAH

IMASK

IREQ

0F9H

0F8H

IMASK2

IREQ2

Interrupt Mask

Interrupt Request

Interrupt Mask 2

Interrupt Request 2

Hex IdentifierRegister

Interrupt
Request

15

78IRQ7-IRQ14

IREQ2

Fixed Priority Logic

Vector Select

Global
Interrupt

Enable

IREQ

IMASK2 IMASK7

Interrupt Edge Select 0DEH PTBEDG

IRQ0-IRQ6

X

� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
INTERRUPT SOURCES

Table 4-1 presents the interrupt types, sources, and vectors available in the Z8E001. Other processors from
the Z8PLUS family may define the interrupts differently.

External Interrupt Sources

External sources can be generated by a transition on the corresponding Port pin. The interrupt may detect a
rising edge, a falling edge, or both.

NOTES:

1. The interrupt sources and trigger conditions are device dependent. See the device product
specification to determine available sources (internal and external), triggering edge options, and
exact programming details.

2. Although interrupts are edge triggered, minimum interrupt request Low and High times must be
observed for proper operation. See the device product specification for exact timing requirements on
external interrupt requests (TWIL, TWIH).

Table 4-1. Z8E001 Interrupt Types, Sources, and Vectors

Name Sources
Vector

Location Comments
Fixed
Priority

IREQ0 Timer0 Time-out 2,3 Internal 1 (Highest)

IREQ1 PB4 High-to-Low
Transition

4,5 External (PB4), Edge Triggered 2

IREQ2 Timer1 Time-out 6,7 Internal 3

IREQ3 PB2 High-to-Low
Transition

8,9 External (PB2), Edge Triggered 4

IREQ4 PB4 Low-to-High
Transition

A,B External (PB4), Edge Triggered 5

IREQ5 Timer2 Time-out C,D Internal 6 (Lowest)

IREQ6 -
IREQ15

Reserved Reserved for future expansion
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*

asked
Internal Interrupt Sources

Internal interrupt sources and trigger conditions are device dependent. On-chip peripherals may set interrupt
under various conditions. Some peripherals always set their corresponding IREQ bit while others must be
specifically configured to do so.

See the device product specification to determine available sources, triggering edge options, and exact
programming details. For more details on the interrupt sources, refer to the chapters describing the timers,
comparators, I/O ports, and other peripherals.

INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING

The Z8PLUS core responds to interrupts as it retires each instruction. If an unmasked interrupt is detected as
an instruction is being retired, the Z8PLUS core does not execute an instruction during the next instruction
cycle. The Z8PLUS MCU instead selects the highest priority outstanding interrupt to be serviced. The program
counter and flags register are pushed to the stack during the next instruction cycle. The appropriate IREQ bit
is cleared, the master enable is cleared and the MCU fetches the interrupt vector from program memory. It
then jumps to the user’s interrupt routine during the following cycle (See Figure 4-3).

Figure 4-3. Interrupt Service Sequence

NOTES:

1. There are no outstanding, unmasked interrupts.

2. Interrupt source sets an IREQ bit during this interval. This bit is highest priority, has an unm
IREQ, and is bit-sampled.

3. PC and flags are pushed, IREQ bit cleared, IMASK (7) cleared, and vector fetched.

4. JUMP to interrupt vector.

5. This portion is the first instruction of user’s interrupt service routine.

Inst 2 Inst 3 Inst 4Inst 1Inst 0

XTAL
2

1 2 3 4 5
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Interrupt Mask Register (IMASK) Initialization

The IMASK register individually or globally enables or disables the interrupts (see Figure 4-4). When bits 0
through bit 6 are set to 1, the corresponding interrupt requests are enabled. The IMASK2 register, bits 0
through 7, enable and disable IRQ7 through IRQ14, respectively. Bit 7 is the master enable bit and must be
set before any of the individual interrupt requests can be recognized. Resetting bit 7 disables all the interrupt
requests. Bit 7 is set and reset by the EI and DI instructions. It is automatically set to 0 during an interrupt
service routine and set to 1 following the execution of an Interrupt Return (IRET) instruction. The IMASK
registers are reset to 00H, disabling all interrupts.

NOTE:

1. It is not good programming practice to directly aqssign a value to the master enable bit. A value
change should always be accomplished by issuing the EI and DI instructions.

2. Care should be taken not to set or clear IMASK bits while the master enable is set.
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Figure 4-4. Interrupt Mask Register

Interrupt Mask Register–IMASK (FBH)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 0
1

Disables Interrupts
Enables Interrupts

6 0
1

Disables IRQ5
Enables IRQ5

5 0
1

Disables IRQ5
Enables IRQ5

4 0
1

Disables IRQ4
Enables IRQ4

3 0
1

Disables IRQ3
Enables IRQ3

2 0
1

Disables IRQ2
Enables IRQ2

1 0
1

Disables IRQ1
Enables IRQ1

0 0
1

Disables IRQ0
Enables IRQ0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-5. Interrupt Mask 2 Register

Interrupt Mask 2 Register–IMASK2 (F9H)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0
1

Disables IRQ14
Enables IRQ14

6 R/W 0
1

Disables IRQ13
Enables IRQ13

5 R/W 0
1

Disables IRQ12
Enables IRQ12

4 R/W 0
1

Disables IRQ11
Enables IRQ11

3 R/W 0
1

Disables IRQ10
Enables IRQ10

2 R/W 0
1

Disables IRQ9
Enables IRQ9

1 R/W 0
1

Disables IRQ8
Enables IRQ8

0 R/W 0
1

Disables IRQ7
Enables IRQ7
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Interrupt Request (IREQ) Register Initialization

IREQ (see Figure 4-6) is a register that stores the interrupt requests for both vectored and polled interrupts.
When an interrupt is issued, the corresponding bit position in the register is set to 1. Bit 0 to bit 5 are assigned
to interrupt requests IREQ0 to IREQ5, respectively.

Whenever RESET is executed, the IREQ resister is set to 00H.

Figure 4-6. Interrupt Request Register.

Interrupt Request Register–IREQ (FAH)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0 Reserved,must be 0

 6 R/W 0
1

IRQ6 reset
IRQ6 set

5 R/W 0
1

IRQ5 reset
IRQ5 set

4 R/W 0
1

IRQ4 reset
IRQ4 set

3 R/W 0
1

IRQ3 reset
IRQ3 set

2 R/W 0
1

IRQ2 reset
IRQ2 set

1 R/W 0
1

IRQ1 reset
IRQ1 set

0 R/W 0
1

IRQ0 reset
IRQ0 set
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-7. Interrupt Request Register 2

Interrupt Request Register 2–IREQ2 (F8H)

Bit 7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit
Position

R/W Value Description

7 R/W 0 IRQ14 reset
IRQ14 set

 6 R/W 0
1

IRQ13 reset
IRQ13 set

5 R/W 0
1

IRQ12 reset
IRQ12 set

4 R/W 0
1

IRQ11 reset
IRQ11 set

3 R/W 0
1

IRQ10 reset
IRQ10 set

2 R/W 0
1

IRQ9 reset
IRQ9 set

1 R/W 0
1

IRQ8 reset
IRQ8 set

0 R/W 0
1

IRQ7 reset
IRQ7 set
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*

d inter-
IREQ SOFTWARE INTERRUPT GENERATION

IREQ can be used to generate software interrupts by specifying IREQ as the destination of any instruction
referencing the Z8PLUS Standard Register File. These software interrupts (SWI) are controlled in the same
manner as hardware generated requests. In other words, the IMASK controls the enabling of each SWI.

To generate a SWI, the request bit in IREQ is set by the following statement:

OR IREQ,#NUMBER

The immediate data variable, NUMBER, has a 1 in the bit position corresponding to the required level of SWI.
For example, an SWI must be issued when an IREQ5 occurs. Bit 5 of NUMBER must have a value of 1.

OR IREQ, #00100000B

If the interrupt system is globally enabled, IREQ5 is enabled, and there are no higher priority requests
pending , control is transferred to the service routine pointed to by the IREQ5 vector.

NOTE: Note that software may modify the IREQ register at any time. Care should be taken when using
any instruction that modifies the IREQ register while interrupt sources are active. The software
writeback always takes precedence over the hardware. If a software writeback takes place on the
same cycle as an interrupt source tries to set an IREQ bit, the new interrupt is lost.

VECTORED PROCESSING

Each Z8PLUS interrupt level has its own vector. When an interrupt occurs, control passes to the service routine
pointed to by the interrupt’s vector location in program memory. The sequence of events for vectore
rupts is as follows:

� PUSH the PC Low Byte on the Stack

� PUSH the PC High Byte on the Stack

� PUSH the FLAGS on the Stack

� Disable Global Interrupts (bit 7 of IMASK)

� Fetch the High Byte of the Vector

� Fetch the Low Byte of the Vector

� Branch to the Service Routine specified by Vector

Figure 4-8 and Figure 4-9 show vectored interrupt operation.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
Figure 4-8. Stacks Before and After Interrupt

SP Old Top of Stack

PC LOW Byte

PC HIGH Byte

FLAGS

Stack Pointer and Stack

SP-3

Stack Pointer and Stack

Top of Stack

After an InterruptBefore an Interrupt
7/�������<�:���� � ��

<�2.75�7UGT U�/CPWCN
+PVGTTWRVU =L/2*
Figure 4-9. Interrupt Vector Table Location

Nesting of Vectored Interrupts

Nesting vectored interrupts allows higher priority requests to interrupt a lower priority request. To initiate
vectored interrupt nesting, perform the following steps during the interrupt service routine:

� PUSH the old IMASK on the stack.

� Load IMASK with a new mask to disable lower priority interrupts.

� Execute an EI instruction.

� Proceed with interrupt processing.

� Execute a DI instruction after processing is complete.

� Restore the IMASK to its original value by POPing the previous mask from the stack.

� Execute IRET.

Depending on the application, some simplification of the above procedure may be possible.

Vector Selected By Priority Logic

0020H

 Program Memory

Interrupt Service Routine

Interrupt Vector Table

0000H

FFFFH

Old PC Value
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
=L/2* +PVGTTWRVU
POLLED PROCESSING

Polled interrupt processing is supported by masking off the IREQ to be polled. This process is accomplished
by setting the corresponding bits in the IMASK to 0.

To initiate polled processing, check the appropriate bits in the IREQ using the Test Under Mask (TM) instruc-
tion. If the bit is set to 1, call or branch to the service routine. The service routine services the request, resets
its Request Bit in the IREQ, and branches or returns back to the main program. An example of a polling
routine is as follows:

TM IREQ,#MASKA;Test for request

JR Z, NEXT;If no request go to NEXT

CALL SERVICE;If request is there,then
;service it

NEXT:
.
.
.

SERVICE:;Process Request
.
.
.

AND IREQ, #MASKB ;Clear Request Bit

RET;Return to next

In this example, if IREQ2 is being polled, MASKA is 00000100B and MASKB is 11111011B.

RESET CONDITIONS

The IMASK and IREQ registers initialize to 00H on RESET.
7/�������<�:���� � ��

<�2.7575'4 5�/#07#.

#22'0&+:�#
#%%'55+0)�6*'�<$$5�+06'40'6
BULLETIN BOARD INFORMATION

The ZiLOG Bulletin Board Service (ZBBS) currently provides basic information on ZiLOG products and
includes a ROM CODE upload area. In addition, the ZBBS provides valuable information on items of
interest, such as ZiLOG specialty software and documentation.

How to Access the ZBBS

The ZBBS can be reached by dialing 1-408-558-8890. The ZBBS supports speeds up to 28.8K Baud with
connections 8-N-1 (8 bits, No parity, 1 stop bit). We recommend that you use an ANSI/BBS terminal emula-
tion setup.

To preview information or download files, follow the on-screen instructions.

The latest production released version of the Z8 GUI software can be downloaded from this site.

ZiLOG ON THE INTERNET

ZiLOG has a Home Page on the Internet. The Home Page address is:

http://www.zilog.com

The ZiLOG Home Page includes valuable information about hardware and software development tools. The
latest production released version of the Z8 GUI software can be downloaded from this site.
7/�������<�:���� # �

<�2.7575'4 5�/#07#.

241$.'/�57))'56+10�4'2146�(14/
oblem,

If you experience any problems while operating this product, or if you note any inaccuracies while reading
the User’s Manual, please copy this form, fill it out, then mail or fax it to =L/2* (see “Return Information”).
We also welcome your suggestions!

Customer Information

Product Information Return Information

Problem Description or Suggestion
Provide a complete description of the problem or your suggestion. If you are reporting a specific pr
include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.

__

__

__

__

Name Country

Company Telephone

Address Fax Number

City/State/ZIP E-Mail Address

Serial # or Board Fab #/Rev. # =L/2*, Inc.

Software Version System Test/Customer Support

Manual Number 910 E. Hamilton Ave., Suite 110, MS 4-3

Host Computer Description/Type Campbell, CA 95008

Fax Number: (408) 558-8536

Email: tools@zilog.com
7/�������<�:����

<�2.7575'4 5�/#07#.

+0&':
A
add (ADD) 3-23
add with carry (ADC) 3-20
addressing

12-bit 2-1
16-bit 2-1
4-bit address 2-1
8-bit address 2-1
direct 2-7
immediate data 2-9
indexed 2-5
indirect register 2-3
modes 2-1
register 2-2
relative 2-8

arithmetic instructions
add (ADD) 3-2, 3-23
add with carry (ADC) 3-2, 3-20
compare (CP) 3-2, 3-32
decimal adjust (DA) 3-2, 3-34
decrement (DEC) 3-2, 3-37
decrement word (DECW) 3-2, 3-38
increment (INC) 3-2, 3-44
increment word (INCW) 3-2, 3-46
subtract (SUB) 3-2, 3-82
subtract with carry (SBC) 3-2, 3-74

assembly language syntax 3-12

B
binary encoding 3-10
bit manipulation instructions

bit clear (AND) 3-3
bit complement (XOR) 3-3

bit set (OR) 3-3
test complement under mask (TCM) 3-3, 3-85
test under mask (TM) 3-3, 3-87

block diagram, interrupt 4-2

C
call procedure (CALL) 3-27
carry flag (C) 3-5
clear (CLR) 3-30
compare (CP) 3-32
complement (COM) 3-31
complement carry flag (CCF) 3-29
condition codes (cc) 3-7, 3-8
control

core registers 1-3
peripheral registers 1-10
registers 1-10

CPU control instructions 3-4
complement carry flag (CCF) 3-4, 3-29
disable interrupts (DI) 3-4, 3-39
enable interrupts (EI) 3-4
halt (HALT) 3-4, 3-43
no operation (NOP) 3-4, 3-59
reset carry flag (RCF) 3-4, 3-64
set carry flag (SCF) 3-4
set carry flag(SCF) 3-76
set register pointer (SRP) 3-4, 3-79
stop (STOP) 3-4, 3-81
watch-dog timer (WDT) 3-4, 3-89
7/�������<�:����

<�2.757UGT U�/CPWCN
+PFGZ =L/2*
D
decimal adjust

DA instruction 3-2, 3-34
flag 3-6

decrement
and jump if non-zero (DJNZ) 3-40
DEC instruction 3-37
word (DECW) 3-38

definitions
flag 3-7
flag settings 3-8

destination operand (dst) 3-1
direct addressing mode (DA) 2-7
disable interrupts (DI) 3-39

E
enable interrupts (EI) 3-42
encoding notation and binary 3-10
external interrupt sources 4-3

F
flag

carry (C) 3-5
decimal adjust 3-6
definitions 3-7
half-carry 3-6
overflow 3-6
processor 3-5
register 3-5
settings definitions 3-8
sign 3-6
stop mode recovery 3-7
watch-dog timer 3-7
zero 3-5

G
general purpose registers 1-5

H
half-carry flag (H) 3-6
halt (HALT) 3-43
high nibble 1-6

I
immediate data addressing (IM) 2-9
increment (INC) 3-44
increment word (INCW) 3-46
indexed addressing (X) 2-5
indirect register addressing (IR) 2-3
instructions

arithmetic 3-2
bit manipulation 3-3
block transfer 3-3
CPU control 3-4
load 3-2
logical 3-2
program control 3-3
rotate and shift 3-4
summary 3-12

internal interrupt sources 4-4
interrupt

block diagram 4-2
control registers 4-1
external sources 4-3
internal sources 4-4
mask register initialization 4-5
mask registers (IMASK) 4-1
polled 4-2
request register (IREQ) 4-1
request register initialization 4-7
request register logic and timing 4-4
return (IRET) 3-47
sources 4-3
vectored 4-2

J
jump (JP) 3-48
jump relative (JR) 3-50
+PFGZ � 7/�������<�:����

<�2.757UGT U�/CPWCN
=L/2* +PFGZ
L
load 3-51

constant (LDC) 3-55
constant auto increment (LDCI) 3-3, 3-57

load instructions
clear (CLR) 3-2, 3-30
load (LD) 3-2, 3-51
load constant (LDC) 3-2, 3-55
pop (POP) 3-2, 3-62
push (PUSH) 3-2, 3-63

logical
AND (AND) 3-25
exclusive OR (XOR) 3-90

logical instructions 3-2
complement 3-2
complement (COM) 3-31
logical AND (AND) 3-2
logical and (AND) 3-25
logical exclusive OR (XOR) 3-2, 3-90
logical OR (OR) 3-2, 3-60

lower nibble values 3-17

M
memory

map 1-12
program 1-11

N
nibble

high 1-6
lower values 3-17

no operation (NOP) 3-59
notation and binary encoding 3-10
notational shorthand 3-10

O
opcode map 3-18
operand

destination 3-1
dst 3-1

source 3-1
src 3-1

overflow flag 3-6

P
peripheral registers 1-10
polled interrupt 4-2
pop (POP) 3-62
processor flags 3-5
program control inctructions

IRET instruction 3-47
program control instructions

call procedure (CALL) 3-3, 3-27
decrement and jump if non-zero (DJNZ) 3-40
decrement and jump non-zero (DJNZ) 3-3
interrupt return (IRET) 3-3
jump (JP) 3-3, 3-48
jump relative (JR) 3-3, 3-50
return (RET) 3-3, 3-65

program memory 1-11
program memory map 1-12

R
register

addressing (R) 1-5, 2-2
control 1-10
control and peripheral 1-10
core control 1-3
file organization 1-4
file space 1-1
flag 3-5
general purpose 1-5
peripheral 1-10
pointer 1-6
stack pointer 1-13
working groups 1-6

relative addressing (RA) 2-8
reset carry flag (RCF) 3-64
return (RET) 3-65
rotate and shift instructions 3-4

rotate left (RL) 3-4, 3-66
7/�������<�:���� +PFGZ �

<�2.757UGT U�/CPWCN
+PFGZ =L/2*
rotate left through carry (RLC) 3-4, 3-68
rotate right (RR) 3-4, 3-70
rotate right through carry (RRC) 3-4, 3-72
shift right arithmetic (SRA) 3-4, 3-77
swap nibbles (SWAP) 3-4, 3-84

S
set

set carry flag (SCF) 3-76
set register pointer (SRP) 3-79

shift right arithmetic (SRA) 3-77
shorthand, notational 3-10
sign flag (S) 3-6
source operand (src) 3-1
stack pointer register (SP) 1-13
stop (STOP) 3-81
stop mode recovery flag (SMR) 3-7
subtract (SUB) 3-82
subtract with carry (SBC) 3-74
swap nibbles (SWAP) 3-84
syntax assembly language 3-12

T
test complement under mask (TCM) 3-85
test under mask (TM) 3-87
timer, watch-dog (WDT) 1-8, 3-89

V
vectored interrupt 4-2

W
watch-dog timer 1-8
watch-dog timer (WDT) 3-89
watch-dog timer flag (WDT) 3-7
working register groups 1-6

Z
zero flag (Z) 3-5
+PFGZ � 7/�������<�:����

	Z8Plus
	User’s Manual
	Additional Sources of Information

	Chapter 1 Address Space
	Introduction
	REGISTER FILE SPACE
	General-Purpose Registers
	Working Register Groups
	Precautions

	CONTROL AND PERIPHERAL REGISTERS
	Control Registers
	Peripheral Registers

	Program Memory
	STACK

	Chapter 2 Addressing Modes
	Addressing Modes
	REGISTER ADDRESSING (R)
	Indirect Register Addressing (IR)
	INDEXED ADDRESSING (X)
	DIRECT ADDRESSING (DA)
	RELATIVE ADDRESSING (RA)
	IMMEDIATE DATA ADDRESSING (IM)

	Chapter 3 Instruction Set
	FUNCTIONAL SUMMARY
	PROCESSOR FLAGS
	CONDITION CODES
	NOTATION AND BINARY ENCODING
	Assembly Language Syntax

	Z8Plus Instruction Summary
	OP CODE MAP

	INSTRUCTION DESCRIPTION AND FORMATS
	ADC Add with Carry
	ADC Add with Carry
	ADD Add
	AND Logical AND
	CALL Call Procedure
	CCF Complement Carry Flag
	CLR Clear
	COM Complement
	CP Compare
	DA Decimal Adjust
	DA Decimal Adjust
	DEC Decrement
	DECW Decrement Word
	DI Disable Interrupts
	DJNZ Decrement And Jump If Non-zero
	EI Enable Interrupts
	HALT Halt
	INC Increment
	INCW Increment Word
	IRET Interrupt Return
	JP Jump
	JR Jump Relative
	LD Load
	LDC Load Constant
	LDCI Load Constant Auto Increment
	NOP No Operation
	OR Logical OR
	POP Pop
	PUSH Push
	RCF Reset Carry Flag
	RET Return
	RL Rotate Left
	RLC Rotate Left Through Carry
	RLC Rotate Left Through Carry
	RR Rotate Right
	RRC Rotate Right Through Carry
	RRC Rotate Right Through Carry
	SBC Subtract with Carry
	SCF Set Carry Flag
	SRA Shift Right Arithmetic
	SRP Set Register Pointer
	STOP Stop
	SUB Subtract
	SWAP Swap Nibbles
	TCM Test Complement Under Mask
	TM Test Under Mask
	WDT Watch-Dog Timer
	XOR Logical Exclusive OR

	Chapter 4 Interrupts
	Introduction
	Interrupt SourCes
	External Interrupt Sources
	Internal Interrupt Sources

	INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING
	Interrupt Mask Register (IMASK) Initialization
	Interrupt Request (IREQ) Register Initialization

	IREQ SOFTWARE INTERRUPT GENERATION
	VECTORED PROCESSING
	Nesting of Vectored Interrupts

	POLLED PROCESSING
	RESET CONDITIONS

	Appendix A Accessing the ZBBS/Internet
	Bulletin Board Information
	How to Access the ZBBS

	ZiLOG ON THE INTERNET

	Problem/Suggestion Report Form
	Index

