

Z8 ${ }^{\text {PLus }}$
 User's Manual

\qquad
© 1999 by ZiLOG, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of ZiLOG, Inc. The information in this document is subject to change without notice. Devices sold by ZiLOG, Inc. are covered by warranty and patent indemnification provisions appearing in ZiLOG , Inc. Terms and Conditions of Sale only.

ZiLOG, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose.

The software described herein is provided on an as-is basis and without warranty. ZiLOG accepts no liability for incidental or consequential damages arising from use of the software.

ZiLOG, Inc. shall not be responsible for any errors that may appear in this document. ZiLOG, Inc. makes no commitment to update or keep current the information contained in this document.

ZiLOG's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and ZiLOG prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

ZiLOG, Inc.

910 East Hamilton Ave., Suite 110
Campbell, CA 95008
Telephone: (408) 558-8500
FAX: (408) 558-8300

Internet: http://www.zilog.com

\qquad

The following conventions have been adopted to provide clarity and ease of use:

- Courier Font For Executables

Commands, variables, icon names, entry field names, selection buttons, code examples, and other executable items are distinguished by the use of the Courier font. Where the use of the font is not possible, like in the Index, the name of the entity is capitalized. For example, a procedure may contain an instruction which appears as: Click on File. However, an Index entry would appear as FILE.

- Grouping of Actions Within A Procedure Step

Actions in a procedure step are all performed on the same window or dialog box. Actions performed on different windows or dialog boxes appear in separate steps.

- Sequencing Words Within A Procedure Step

When an item in a procedure contains a series of actions, the second action is preceded by the word then, and the third and subsequent actions are preceded by the word and. For example: Click on View, then Memory, and z8 Code Memory.

- Unavailable menu items are presented in gray.

Z8 ${ }^{\text {Plus }}$ User's Manual

Preface

ADDITIONAL SOURCES OF INFORMATION

In addition to this manual, you should have access to and be familiar with the following documentation:

- Z8 Microcontrollers User's Manual, UM95Z800103
- Data Sheet for each product with which you work.

Totally Logical
Chapter Title and Subsections
Page

Chapter 1. Address Space

Introduction1-1
Register File Space 1-1
General-Purpose Registers 1-5
Working Register Groups 1-6
Precautions 1-8
Control and Peripheral Registers 1-10
Control Registers 1-10
Peripheral Registers 1-10
Program Memory 1-11
Stack 1-13
Chapter 2. Addressing Modes
Addressing Modes 2-1
Register Addressing (R) 2-2
Indirect Register Addressing (IR) 2-3
Indexed Addressing (X) 2-5
Direct Addressing (DA) 2-7
Relative Addressing (RA) 2-8
Immediate Data Addressing (IM) 2-9
Z8 ${ }^{\text {PLus }}$ User's Manual
Table of Contents ZiLOG
Chapter Title and Subsections Page
Chapter 3. Instruction Set
Functional Summary 3-1
Processor Flags 3-5
Condition Codes 3-7
Notation And Binary Encoding 3-10
Assembly Language Syntax 3-12
Z8Plus Instruction Summary 3-12
Opcode Map 3-18
Instruction Description and Formats 3-19
ADC-Add with Carry 3-20
ADC-Add with Carry 3-22
ADD-Add 3-23
AND-Logical AND 3-25
CALL-Call Procedure 3-27
CCF-Complement Carry Flag 3-29
CLR-Clear 3-30
COM-Complement 3-31
CP-Compare 3-32
DA-Decimal Adjust 3-34
DEC-Decrement 3-37
DECW-Decrement Word 3-38
DI-Disable Interrupts 3-39
DJNZ-Decrement And Jump If Non-zero 3-40
El-Enable Interrupts 3-42
HALT-Halt 3-43
INC-Increment 3-44
INCW-Increment Word 3-46
IRET-Interrupt Return 3-47
JP-Jump 3-48
Chapter Title and Subsection Page
JR-Jump Relative 3-50
LD-Load 3-51
LDC-Load Constant 3-55
LDCI-Load Constant Auto Increment 3-57
NOP-No Operation 3-59
OR-Logical OR 3-60
POP-Pop 3-62
PUSH-Push 3-63
RCF-Reset Carry Flag 3-64
RET-Return 3-65
RL-Rotate Left 3-66
RLC-Rotate Left Through Carry 3-68
RLC-Rotate Left Through Carry 3-69
RR-Rotate Right 3-70
RRC-Rotate Right Through Carry 3-72
RRC-Rotate Right Through Carry 3-73
SBC-Subtract with Carry 3-74
SCF-Set Carry Flag 3-76
SRA-Shift Right Arithmetic 3-77
SRP-Set Register Pointer 3-79
STOP-Stop 3-81
SUB-Subtract 3-82
SWAP-Swap Nibbles 3-84
TCM-Test Complement Under Mask 3-85
TM-Test Under Mask 3-87
WDT-Watch-Dog Timer 3-89
XOR-Logical Exclusive OR 3-90
Z8 ${ }^{\text {PLus }}$ User's Manual
Table of Contents ZiLOG
Chapter Title and Subsections Page
Chapter 4. Interrupts
Introduction 4-1
Interrupt Sources 4-3
External Interrupt Sources 4-3
Internal Interrupt Sources 4-4
Interrupt Request (IREQ) Register Logic And Timing 4-4
Interrupt Mask Register (IMASK) Initialization 4-5
Interrupt Request (IREQ) Register Initialization 4-7
IREQ Software Interrupt Generation 4-9
Vectored Processing 4-9
Nesting of Vectored Interrupts 4-11
Polled Processing 4-12
Reset Conditions 4-12
Appendix A. Accessing the ZBBS/Internet
Bulletin Board Information
How to Access the ZBBS
ZiLOG On The Internet
Problem/Suggestion Report Form
Index

Chapter Title and Subsections

Chapter 1. Address Space

Figure 1-1. Complete Register File RAM Space . 1-2
Figure 1-2. 16-Bit Register Addressing . 1-5
Figure 1-3. Accessing Individual Bits (Example) . 1-5
Figure 1-4. Working Register Addressing (Example) . 1-7
Figure 1-5. Register Pointer . 1-8
Figure 1-6. Program Memory Map . 1-12
Figure 1-7. Stack Pointer . 1-13
Figure 1-8. Stack Operations . 1-14

Chapter 2. Addressing Modes

Figure 2-1. 8-Bit Register Addressing . 2-2
Figure 2-2. 4-Bit Register Addressing . 2-3
Figure 2-3. Indirect Addressing of Register File Memory . 2-4
Figure 2-4. Indirect Register Addressing to Program Memory . 2-5
Figure 2-5. Indexed Register Addressing . 2-6
Figure 2-6. Direct Addressing . 2-7
Figure 2-7. Retrieve Addressing . 2-8
Figure 2-8. Immedate Data Addressing . 2-9
Chapter 3. Instruction Set
Figure 3-1. Flag Register . 3-5
Figure 3-2. Op Code Map . 3-18
Chapter 4. Interruupts
Figure 4-1. Interrupt Control Register Addresses and Identifiers . 4-1
Figure 4-2. Interrupt Block Diagram . 4-2
Figure 4-3. Interrupt Service Sequence . 4-4
Figure 4-4. Interrupt Mask Register . 4-5
Figure 4-5. Interrupt Mask 2 Register . 4-6Z8 ${ }^{\text {PLus }}$ User's ManualList of FiguresZiLOG
Figure 4-6. Interrupt Request Register. 4-7
Figure 4-7. Interrupt Request Register 2 4-8
Figure 4-8. Stacks Before and After Interrupt 4-10
Figure 4-9. Interrupt Vector Table Location 4-11

Totally Logical List of Tables
Chapter Title and Subsections Page
Chapter 1. Address Space
Table 1-1 Z8 ${ }^{\text {PLus }}$ Core Control Registers 1-3
Table 1-1 Page 0 Register File Organization 1-4
Chapter 3. Instruction Set
Table 3-1 Load Instructions 3-2
Table 3-2 Arithmetic Instructions 3-2
Table 3-3 Logical Instructions 3-2
Table 3-4 Program Control Instructions 3-3
Table 3-5 Bit Manipulation Instructions 3-3
Table 3-6 Block Transfer Instructions 3-3
Table 3-7 Rotate and Shift Instructions 3-4
Table 3-8 CPU Control Instructions 3-4
Table 3-9 Flag Definitions 3-7
Table 3-10 Flag Settings Definitions 3-8
Table 3-11 Condition Codes 3-8
Table 3-12 Notational Shorthand 3-10
Table 3-13 Additional Symbols 3-11
Table 3-14 Instruction Summary 3-13
Table 3-15 Lower Nibble Values 3-17
Table 3-16 DA Operation Reference 3-34
Table 3-17 Register Pointers, Working Register Groups, and Actual Registers 3-79
Chapter 4. Interrupts
Table 4-1 Z8E001 Interrupt Types, Sources, and Vectors 4-3

\qquad

INTRODUCTION

Two address spaces are available for the $\mathrm{Z}{ }^{\text {PLus }} \mathrm{MCU}$:

- Register file RAM contains addresses for all the control registers and all the general purpose registers.
- Program memory contains addresses for all memory locations where executable code and/or data are stored.

REGISTER FILE SPACE

The on-chip register file RAM is organized into 16 pages, where each page has 256 addressable memory locations. The first page (page 0) contains both control registers and general purpose registers. All the remaining pages (pages 1 through 15) contain only general purpose registers. Figure 1-1 illustrates the complete register file RAM space. As shown, control registers are located in the upper half of page 0 . Any specific implementation of the $\mathrm{Z}^{\mathrm{PLUS}}$ core may use only a subset of the complete register file RAM space.

Table 1-1 describes the Core Control Registers and Table 1-2 shows the Page 0 Register File organization.
All registers on the $\mathrm{Z}^{\text {PLus }}$-family products are fully read/writable. Hardware may write lock certain registers or bits under some conditions. The TCTLHI register is one such example.

Figure 1-1. Complete Register File RAM Space

Table 1-1. Z8 ${ }^{\text {PLuS }}$ Core Control Registers

Hex Address	Register Name	Register Description	Comments
0FFH	STKPTR (SPL)	Stack Pointer Low	LSB of Stack Pointer
0FEH	SPH	Stack Pointer High	MSB of Stack Pointer
0FDH	REGPTR(RP)	Register Pointer	
0FCH	FLAGS	Flags	
0FBH	IMASK	Interrupt Mask 1	Ints. 0-6
0FAH	IREQ	Interrupt Request 1	Ints. 0-6
0F9H	IMASK2	Interrupt Mask 2	Ints. 7 - 14
0F8H	IREQ2	Interrupt Request 2	Ints. 7 - 14
0F7H			Reserved
0F6H			Reserved
0F5H			Reserved
0H4H			Reserved
0F3H			Reserved
0F2H			Reserved
0F1H			Reserved
0F0H			

The Stack Pointer High register (0 FEH), the interrupt mask register 2 (0 F 9 H), and the interrupt request register $2(0 \mathrm{~F} 8 \mathrm{H})$ are optional and are reserved if not implemented.

Table 1-2. Page 0 Register File Organization

Hex Address Range	Register Description
F0-FF	Core Control Registers
E0 - EF	Virtual Copy of the Current Working Register Set
D0-DF	Port Logic Control Registers
C0 -CF	Timer Peripherals Control Registers
B0- BF	Reserved for Future Extensions
A0-AF	Reserved for Future Extensions
$90-9 F$	Reserved for Future Extensions
$80-8 \mathrm{~F}$	Reserved for Future Extensions
$70-7 \mathrm{~F}$	General Purpose Registers
$60-6 \mathrm{~F}$	General Purpose Registers
$50-5 \mathrm{~F}$	General Purpose Registers
$40-4 \mathrm{~F}$	General Purpose Registers
$30-3 \mathrm{~F}$	General Purpose Registers
$20-2 \mathrm{~F}$	General Purpose Registers
$10-1 \mathrm{~F}$	General Purpose Registers
$00-0 \mathrm{~F}$	General Purpose Registers

Registers can be accessed as either 8-bit or 16-bit registers using Direct, Indirect, or Indexed Addressing. All general-purpose registers can be referenced or modified by any instruction that accesses an 8-bit register, without the need for special instructions. Registers accessed as 16 bits are treated as even-odd register pairs. In this case, the data's Most Significant Byte (MSB) is stored in the even numbered register, while the Least Significant Byte (LSB) goes into the next higher odd numbered register (Figure 1-2).

MSB	LSB
Rn	Rn+1
$\mathrm{n}=\text { Even }$ Address	

Figure 1-2. 16-Bit Register Addressing
By using a logical instruction and a mask, individual bits within registers can be accessed for bit set, bit clear, bit complement, or bit test operations. For example, the instruction AND R15, MASK performs a bit clear operation. Figure 1-3 shows this example.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
R 15							

1	1	0	1	1	1	1	1

AND R15, DFH ;Clear Bit 5 of Working Register 15

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Figure 1-3. Accessing Individual Bits (Example)
When instructions are executed, registers are only read, not written, when defined as sources; and read and/or written when defined as destinations. All General-Purpose Registers function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. It does not keep its last state from a V_{LV} reset if V_{CC} drops below 1.8 V .

Working Register Groups

Instructions can access 8 -bit registers and register pairs (16-bit words) using either 4 -, 8 -, or 12 -bit address fields. Eight-bit address fields refer to the actual address of the register within the current page. For example, Register 58H is accessed by calling upon its 8-bit address, 01011000 (58H). The lower nibble of the Register Pointer specifies the current RAM page.

With 4-bit addressing, the register file is logically divided into 16 Working Register Groups of 16 registers each, as shown in Table 1-3. These 16 registers are known as Working Registers. A Register Pointer (one of the control registers, FDH) contains the base address of the active Working Register Group. The High nibble of the Register Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit address of the Working Register is combined with the upper four bits (High nibble) of the Register Pointer, thus forming the 8-bit actual address. Figure 1-4 illustrates this operation. Since working registers are typically specified by short format instructions, there are fewer bytes of code needed. In addition, when processing interrupts or changing tasks, the Register Pointer (see Figure 1-5) speeds context switching. A special Set Register Pointer (SRP) instruction sets the contents of the Register Pointer.

Data transfer across RAM page boundaries can be accomplished via 12-bit addressing. Using certain instruction modes, data can be moved from the current page and working group into any register on the chip by specifying the absolute 12-bit address, including page. Not all family members support 12-bit addressing. See the applicable product specification for specific information.

Table 1-3. Working Register Groups

Register Pointer (FDH) High Nibble (Binary)	Working Register Group (HEX)	Actual Registers (HEX)
1111	F	$\mathrm{~F} 0-\mathrm{FF}$
1110	E	$\mathrm{E} 0-\mathrm{EF}$
1101	D	$\mathrm{D} 0-\mathrm{DF}$
1100	C	$\mathrm{C} 0-\mathrm{CF}$
1011	B	$\mathrm{~B} 0-\mathrm{BF}$
1010	A	$\mathrm{~A} 0-\mathrm{AF}$
1001	9	$90-9 \mathrm{~F}$
1000	8	$80-8 \mathrm{~F}$
0111	7	$70-7 \mathrm{~F}$

Table 1-3. Working Register Groups (Continued)

Register Pointer (FDH) High Nibble (Binary)	Working Register Group (HEX)	Actual Registers (HEX)
0110	6	$60-6 \mathrm{~F}$
0101	5	$50-5 \mathrm{~F}$
0100	4	$40-4 \mathrm{~F}$
0011	3	$30-3 \mathrm{~F}$
0010	2	$20-2 \mathrm{~F}$
0001	1	$10-1 \mathrm{~F}$
0000	0	$00-0 \mathrm{~F}$

Figure 1-4. Working Register Addressing (Example)

The upper nibble of the register file address, provided by the register pointer, specifies the active working-register group.

The lower nibble specifies the current page of RAM.

Figure 1-5. Register Pointer

Precautions

Registers in the Standard Register File must be correctly used or certain conditions produce inconsistent results.

- The watch-dog timer can only be disabled via software if the first instruction out of RESET performs this function. During the execution of the first instruction after the $Z_{8}{ }^{\text {PLUS }}$ leaves RESET, the upper five bits of the TCTLHI register can be written. After the first instruction, hardware does not allow the upper five bits of this register to be written.
- Some control registers, including the port inputs and timer count registers, may be updated by hardware. Writing these registers from software always overrides the hardware update from the same cycle, but with unpredictable results. For example, writing into the count value register of a running timer can cause
unexpected results if the hardware was in the process of decrementing the timer for the terminal count and generating an interrupt.
- The register space from $0 \mathrm{E} 0 \mathrm{H}-0 \mathrm{EFH}$ is special. The MCU uses these addresses to flag accesses via 4-bit addressing mode to the current working register group. There are no physical registers at that location. Care must be taken that the Register Pointer never points at Group E on the first page (be loaded with E0H). This is an undefined case. Also, indirect addressing does not redirect a second time and find the working registers. This is also an undefined case. As an example, in the code below, R0 does not find the data in register 08 . It returns garbage. R2 correctly contains a copy of register 08.

SRP	$\# \% 00$
LD	R1, \#\%E8
LD	R0, @R1
LD	R2, \%E8

CONTROL AND PERIPHERAL REGISTERS

Control Registers

The standard control registers govern the operation of the CPU. Any instruction which references the register file can access these control registers. Available control registers are:

- Stack Pointer Low (SPL or STKPTR)
- \quad Stack Pointer High (SPH)
- Register Pointer (RP or REGPTR)
- Flags (FLAGS)
- Interrupt Mask 1 (IMASK)
- Interrupt Request 1 (IREQ)
- Interrupt Mask 2 (IMASK2)
- Interrupt Request 2 (IREQ2)

A 16-bit Program Counter (PC) to determine the sequence of current program instructions. The PC is not an addressable register.

Peripheral Registers

Peripheral registers are used to transfer data, configure the operating mode, and control the operation of the on-chip peripherals. Any instruction that references the register file can access the peripheral registers. Possible peripheral registers can include:

- Timer Count Value Register for Timer n
- Auto-Initialization Value Register(s) for Timer n
- Timer Control Registers (High and Low Byte)
- Watch-Dog Timer Registers (High and Low Byte)

In addition, the port registers are considered to be peripheral registers. Ports generally have at least the following four dedicated registers which are readable and writable by software:

- Port Input Value Register
- Port Output Value Register
- Port Control Register
- Port Special Function Register

PROGRAM MEMORY

The program memory map is shown in Figure 1-6. The first two bytes of program memory are reserved for the PC rollover vector. When the PC wraps around to 0000 H , bytes 0000 H and 0001 H are executed as instructions, enabling a user defined behavior for this occurrence. For example, a JR instruction in 0000H and a corresponding displacement in 0001 H could be defined for the PC rollover vector. The next 30 bytes of Program Memory are reserved for the interrupt vectors. These locations contain 16-bit vectors that correspond to the available interrupts. Address 0020 H through the end of the populated memory (0FFFFh, 64 KB maximum) consists of on-chip mask-programmable ROM or EPROM or Flash. The first byte of program memory executed following a RESET is located at 0020 H . See the product data sheet for the exact program, data, register memory size, and address range available.

The internal program memory may be one-time programmable (OTP) or mask programmable dependent on the specific device. A ROM protect feature prevents dumping of the ROM contents. The ROM Protect option is mask-programmable and is selected by the customer when the ROM code is submitted. For programmable memory devices, the ROM Protect option is an OTP programming option.

Address

Figure 1-6. Program Memory Map

STACK

The stack always resides in the general purpose registers of the on-chip register file RAM. The stack pointer register (SP) contains an address into the standard register file that is the address of the operand that is currently on the top of the stack. The register OFFH is the 8-bit stack pointer (SP), that is used for all stack operations (see Figure 1-7).

Some devices prepend the lower nibble of register OFEH to form a 12-bit stack pointer. Otherwise, register 0 FEH is reserved.

Figure 1-7. Stack Pointer
The stack address is decremented prior to a PUSH operation and incremented after a POP operation. The stack address always points to the data stored on the top of the stack. The stack is a return stack for CALL instructions and interrupts, as well as a data stack.

During a CALL instruction, the contents of the Program Counter are saved on the stack. The PC is restored during a RET instruction. Interrupts cause the contents of the PC and FLAGS registers to be saved on the stack. The IRET instruction restores them (see Figure 1-8).

An overflow or underflow can occur when the stack address is incremented or decremented during normal stack operations. The programmer must prevent this occurrence or unpredictable operation may result. The stack must not encroach into the control registers.

Figure 1-8. Stack Operations

ADDRESSING MODES

The $Z 8^{\text {PLuS }}$ microcontroller provides six addressing modes:

- \quad Register (R)
- Indirect Register (IR)
- \quad Indexed (X)
- Direct Address (DA)
- Relative Address (RA)
- Immediate Data (IM)

With the exception of immediate data and condition codes, all operands are expressed as register file or Program Memory addresses. Registers are accessed using 12-bit addresses in the range of 000H-FFFH. The Program Memory is accessed using 16-bit addresses (or register pairs) in the range of $0000 \mathrm{H}-\mathrm{FFFFH}$.

Generally, registers are accessed, within the current page, by specifying an 8-bit address. The upper 4 bits of the absolute address is specified by pre-pending the lower 4 bits of the Register Pointer (OFDH) (the Page Pointer) to the 8 -bit address to form a 12 -bit address.

Working Registers are accessed using 4-bit addresses in the range of $0-15(0 \mathrm{H}-\mathrm{FH})$. The address of the register being accessed is formed by the combination of the lower 4 bits of the RP (Page Pointer), the upper four bits in the Register Pointer (Group Pointer) and the 4-bit working register address supplied by the instruction.

Registers can be used in pairs to designate 16-bit values or memory addresses. A Register Pair must be specified as an even-numbered address in the range of $0-14$ for Working Registers, or 0-4094 for general purpose registers.

In the following definitions of $\mathrm{Z} 8^{\text {PLus }}$ Addressing Modes, the use of register can also imply register pair, working register, or working register pair, depending on the context.

NOTE: See the product data sheet for exact program and register memory types and address ranges available.

REGISTER ADDRESSING (R)

In 8-bit Register Addressing mode, the operand value is equivalent to the contents of the specified register or register pair.

In the Register Addressing (see Figure 2-1), the destination and/or source address specified corresponds to the actual register in the current page of the register file.

Figure 2-1. 8-Bit Register Addressing

Figure 2-2. 4-Bit Register Addressing
In 4-bit Register Addressing (see Figure 2-2), the destination and/or source addresses point to the Working Register within the current Working Register Group. This 4-bit address is combined with the Register Pointer to form the actual 12-bit address of the affected register.

INDIRECT REGISTER ADDRESSING (IR)

In the Indirect Register Addressing Mode, the contents of the specified register are equivalent to the address of the operand (see Figure 2-3 and Figure 2-4).

Depending upon the instruction selected, the specified register contents points to a Register or Program Memory location.

When accessing program memory, register pairs or Working Register pairs are used to hold the 16 -bit addresses.

Figure 2-3. Indirect Addressing of Register File Memory

Figure 2-4. Indirect Register Addressing to Program Memory

INDEXED ADDRESSING (X)

The Indexed Addressing Mode is used only by the Load (LD) instruction. An indexed address consists of a register address offset by the contents of a designated Working Register (the Index). This offset is added to the register address to obtain the address of the operand. Figure 2-5 illustrates this addressing convention.

Figure 2-5. Indexed Register Addressing

DIRECT ADDRESSING (DA)

The Direct Addressing mode, as shown in Figure 2-6, specifies the address of the next instruction to be executed. Only the Conditional Jump (JP) and Call (CALL) instructions use this addressing mode.

Figure 2-6. Direct Addressing

RELATIVE ADDRESSING (RA)

In the Relative Addressing mode, illustrated in Figure 2-7, the instruction specifies a two's-complement signed displacement in the range of -128 to +127 . This is added to the contents of the Program Counter to obtain the address of the next instruction to be executed. The PC (prior to the add) consists of the address of the instruction following the Jump Relative (JR) or Decrement and Jump if Non-Zero (D JNZ) instruction. JR and DJNZ are the only instructions which use this addressing mode.

Figure 2-7. Retrieve Addressing

IMMEDIATE DATA ADDRESSING (IM)

Immediate data is considered to be an addressing mode for the purposes of this discussion. It is the only addressing mode that does not indicate a register or memory address as the source operand. The operand value used by the instruction is the value supplied in the operand field itself. Because an immediate operand is part of the instruction, it is always located in the Program Memory address space (see Figure 2-8).

Figure 2-8. Immedate Data Addressing

\qquad

FUNCTIONAL SUMMARY

$\mathrm{Z} 8^{\text {Plus }}$ instructions can be divided into the following eight functional groups:

- Load
- Arithmetic
- Logical
- Program Control
- Bit Manipulation
- Block Transfer
- Rotate and Shift
- CPU Control

Table 3-1 through Table 3-8 show the instructions belonging to each group and the number of operands required for each. The source operand is src, the destination operand is dst, and a condition code is cc.

When instructions are executed, registers defined as sources are read only. All General-Purpose Registers function as:

- accumulators
- address pointers
- index registers
- stack areas
- scratch pad memory

Table 3-1. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant
POP	dst	Pop
PUSH	src	Push

Table 3-2. Arithmetic Instructions

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADD	dst, src	Add
CP	dst, src	Compare
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
SBC	dst, src	Subtract with Carry
SUB	dst, src	Subtract

Table 3-3. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
COM	dst	Complement
OR	dst, src	Logical OR
XOR	dst, src	Logical Exclusive OR

Table 3-4. Program Control Instructions

Mnemonic	Operands	Instruction
CALL	dst	Call Procedure
DJNZ	dst, src	Decrement and Jump Non-Zero
IRET		Interrupt Return
JP	cc, dst	Jump
JR	cc, dst	Jump Relative
RET		Return

Table 3-5. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
TCM	dst, src	Test Complement Under Mask
TM	dst, src	Test Under Mask
AND	dst, src	Bit Clear
OR	dst, src	Bit Set
XOR	dst, src	Bit Complement

Table 3-6. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant Auto Increment

Table 3-7. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
RL	dst	Rotate Left
RLC	dst	Rotate Left Through Carry
RR	dst	Rotate Right
RRC	dst	Rotate Right Through Carry
SRA	dst	Shift Right Arithmetic
SWAP	dst	Swap Nibbles

Table 3-8. CPU Control Instructions

Mnemonic	Operands	Instruction
CCF		Complement Carry Flag
DI		Disable Interrupts
EI		Enable Interrupts
HALT		Halt
NOP		No Operation
RCF		Reset Carry Flag
SCF		Set Carry Flag
SRP	src	Set Register Pointer
STOP		Stop
WDT		Refresh WDT

PROCESSOR FLAGS

The Flag Register (FCH) informs the user of the processor'sbcurrent status. The flags and their bit positions in the Flag Register are shown in Figure 3-1.

The Flag Register contains eight bits of status information which are set or cleared by CPU operations. Four of the bits ($\mathrm{C}, \mathrm{V}, \mathrm{Z}$ and S) can be tested for use with conditional Jump instructions. Two flags (H and D) are used for BCD arithmetic. The two remaining bits in the Flag Register are the watch-dog timer reset flag and the stop mode recovery flag. Both of these flag bits may be tested and must be explicitly cleared by software.

As with bits in the other control registers, the Flag Register bits can be set or reset by instructions; however, only those instructions that do not affect the flags as an outcome of the execution should be assigned a value.

Figure 3-1. Flag Register
Flag Register (FCH: Read/Write) R252 Flags

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	U	U	U	U	U	U	$*$	$*$
$\mathrm{R}=$ Read W $=$ Write X Indeterminate U $=$ Unchanged								

Bit/Field	Bit Position	R/W \quad Value	Description
Carry Flag (C)	7	R/W	The Carry Flag is set to 1 whenever the result of an arithmetic operation generates a carry out of or a borrow into the high order bit 7. Otherwise, the Carry Flag is cleared to 0. Following Rotate and Shift instructions, the Carry Flag contains the last value shifted out of the specified register. An instruction can set (I), reset(O), or complement the Carry Flag. The carry flag is not effected by RESET.
Zero Flag (Z)	6	R/W	For arithmetic and logical operations, the Zero Flag is set to 1 if the result is 0. Otherwise, the Zero Flag is cleared to 0. If the result of testing bits in a register is 00H, the Zero Flag is set to 1. Otherwise the Zero Flag is cleared to 0.

SignFlag (S)	5	R/W	The Sign Flag stores the value of the most significant bit of a result following an arithmetic, logical, rotate, or shift operation. When performing arithmetic operations on signed numbers, binary two's-complement notation is used to represent and process information. A positive number is identified by a 0 in the most significant bit position (bit 7); therefore, the Sign Flag is also 0 . A negative number is identified by a 1 in the most significant bit position (bit 7); therefore, the Sign Flag is also 1. The Sign Flag is not effected by RESET.
Overflow (V)	4	R/W	For signed arithmetic, rotate, and shift operations, the Overflow Flag is set to 1 when the result is greater than the maximum possible number (>127) or less than the minimum possible number (<-128) that can be represented in two's-complement form. The Overflow Flag is cleared to 0 if no overflow occurs. Following logical operations the Overflow Flag is cleared to 0 . The Overflow Flag is not effected by RESET.
Decimal Adjust Flag (D)	3	R/W	The Decimal Adjust Flag is used for BCD arithmetic. Since the algorithm for correcting $B C D$ operations is different for addition and subtraction, this flag specifies what type of instruction was last executed so that the subsequent Decimal Adjust (DA) operation can function properly. Normally, the Decimal Adjust Flag cannot be used as a test condition. After a subtraction, the Decimal Adjust Flag is set to 1. Following an addition it is cleared to 0 . The Decimal Adjust Flag is not effected by RESET.
Half- Carry Flag (H)	2	R/W	The Half Carry Flag is set to 1 whenever an addition generates a carry out of bit 3 (Overflow) or a subtraction generates a "borrow into" bit 3. The Half Carry Flag is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. As in the case of the Decimal Adjust Flag, the user does not normally access this flag. The Half Carry flag is not effected by RESET.

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Watch- } \\ \text { Dog } \\ \text { Timer } \\ \text { (WDT) }\end{array} & 1 & \text { R/W } & \begin{array}{l}\text { The Watch-Dog Timer reset flag is set by a watchdog timer } \\ \text { timeout. This permits software to determine if a timeout of the } \\ \text { watchdog timer has occurred. } \\ \text { The WDT flag is cleared by the } \overline{\text { RESET pin. The WDT and }}\end{array} \\ \text { SMR flags are the only flags effected by RESET. This behavior } \\ \text { permits software to determine if a RESET occurred, if a WDT } \\ \text { timeout occurred, or if a return from STOP mode occurred. } \\ \text { Software must explicitly clear this flag after detecting the } \\ \text { timeout condition. } \\ \text { Failure to clear this flag may result in undefined behavior. }\end{array}\right\}$

CONDITION CODES

The C, Z, S, and V Flags control the operation of the conditional JUMP instructions. Sixteen frequently useful functions of the flag settings are encoded in a 4-bit field called the condition code (cc), which forms bits $4-7$ of the conditional instructions.

Flag Definitions, Flag Settings and Condition Codes are summarized in Table 3-9, Table 3-10, and Table 3-11.

Table 3-9. Flag Definitions

Flag	Description
C	Carry Flag
Z	Zero Flag
S	Sign Flag
V	Overflow Flag

Table 3-10. Flag Settings Definitions

Symbol	Definition
0	Cleared to 0
1	Set to 1
$*$	Set or cleared according to operation
-	Unaffected
X	Undefined

Table 3-11. Condition Codes

Binary	HEX	Mnemonic	Definition	Flag Settings
0000	0	F	Always False	-
1000	8	(blank)	Always True	-
0111	7	C	Carry	$\mathrm{C}=1$
1111	F	NC	No Carry	$\mathrm{C}=0$
0110	6	Z	Zero	$\mathrm{Z}=1$
1110	E	NZ	Non-Zero	$\mathrm{Z}=0$
1101	D	PL	Plus	$\mathrm{S}=0$
0101	5	Ml	Minus	$\mathrm{S}=1$
0100	4	OV	Overflow	$\mathrm{V}=1$
1100	C	NOV	No Overflow	$\mathrm{V}=0$

Table 3-11. Condition Codes (Continued)

Binary	HEX	Mnemonic	Definition	Flag Settings
0110	6	EQ	Equal	$\mathrm{Z}=1$
1110	E	NE	Not Equal	$\mathrm{Z}=0$
1001	9	GE	Greater Than or Equal	$(\mathrm{S}$ XOR V) $=0$
0001	1	LT	Less Than	$(\mathrm{S}$ XOR V) $=1$
1010	A	GT	Greater Than	$(\mathrm{Z}$ OR (S XOR V)) $=0$
0010	2	LE	Less Than or Equal	$(\mathrm{Z}$ OR (S XOR V) $)=1$
1111	F	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	7	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	B	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND Z $=0)=1$
0011	3	ULE	Unsigned Less Than or Equal	$(\mathrm{C}$ OR Z) $=1$

ZiLOG

NOTATION AND BINARY ENCODING

The operands and status flags use a notational shorthand. Operands, condition codes, address modes, and their notations are described in Table 3-12.

Table 3-12. Notational Shorthand

Notation	Address Mode	Operand	Range*
cc	Condition Code		See Table 3-11, condition codes
r	Working Register	Rn	$\mathrm{n}=0-15$
R	Register or Working Register	$\begin{gathered} \mathrm{Reg} \\ \mathrm{Rn} \end{gathered}$	Reg. represents a number in the range of 00H to FFH $\mathrm{n}=0-15$
RR	Indirect Register Pair or Working Register Pair	$\begin{aligned} & \text { Reg } \\ & \text { RRp } \end{aligned}$	$\mathrm{p}=0,2,4,6,8,10,12$, or 14
Ir	Indirect Working Register	@Rn	$\mathrm{n}=0-15$
IR	Indirect Register or Indirect Working Register	@Reg @Rn	Reg. represents a number in the range of 00 H to FFH $\mathrm{n}=0-15$
Irr	Indirect Working Register Pair	@RRp	$\mathrm{p}=0,2,4,6,8,10,12$, or 14
IRR	Indirect Register Pair or Working Register Pair	$\begin{aligned} & @ \operatorname{Reg} \\ & @ \operatorname{RRp} \end{aligned}$	Reg. represents an even number in the range 00 H to FFH $\mathrm{p}=0,2,4,6,8,10,12 \text {, or } 14$
X	Indexed	$\mathrm{Reg}(\mathrm{Rn})$	Reg. represents a number in the range of 00 H to FFH $\mathrm{n}=0-15$
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000 H to FFFFH
RA	Relative Address	Addrs	Addrs. represents a number in the range of +127 to -128 which is an offset relative to the address of the next instruction
IM	Immediate	\#Data	Data is a number between 00 H to FFH
*See the device product specification to determine the exact register file range available. The register file size varies by the device type.			

Table 3-13, which follows, describes additional symbols used.
Table 3-13. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag Register (FCH)
RP	Register Pointer (FDH)
IMR	Interrupt Mask Register (FBH)
$\#$	Immediate Operand Prefix
$\%$	Hexadecimal Number Prefix
H	Hexadecimal Number Suffix
B	Binary Number Suffix
OPC	op code

Assignment of a value is indicated by the symbol \leftarrow, for example:

```
dst \leftarrow dst + src
```

indicates the source data is added to the destination data and the result is stored in the destination location.
The notation addr (n) is used to refer to bit ' n ' of a given location. The following example refers to bit 7 of the destination operand.
dst
Some instructions operate with several addressing modes. This situation is indicated by an op code number written like $\mathrm{x}[\mathrm{]}$. The brackets are filled by a nibble indicating the addressing mode in use. For example, ADD 0 [] indicates that the ADD instruction works identically for more than one addressing mode.

Assembly Language Syntax

For proper instruction execution, assembly language syntax requires that the destination and source be specified as dst, src (in that order). The following instruction descriptions show the format of the object code produced by the assembler. This binary format should be followed by users who prefer manual program coding or who intend to implement their own assembler. Other third party assemblers can differ. Please consult the software user's manual for detailed information.

Example: The contents of registers 43 H and 08 H are added, and the result is stored in 43H. The assembly syntax and resulting object code are:

ASM:	ADD	43 H,	08 H	(ADD dst, src)
OBJ:	04	08	43	(OPC src, dst)

In general, whenever an instruction format requires an 8-bit register address, that address can specify any register location in the range $0-255$. When using working registers (R0-R15), a 4-bit address is used. If a working register is used and an 8-bit address is required by the assembler, an E is pre-pended to the 4-bit working register address. If, in the above example, the source register is a working register, the assembly syntax and resulting object code are:

ASM:	ADD	43 H,	R 8	(ADD dst, src)
OBJ:	04	E 8	43	(OPC src, dst)

NOTES:

1. Note that the 4 -bit address R8 was expanded to 8 -bits by pre-pending EH. This expansion occurs any time a 4-bit address isspecified for an instruction that takes 8 -bit operands.
2. See the device product specification to determine the exact register file range available. The register file size varies by device type

Z8 ${ }^{\text {PLUS }}$ INSTRUCTION SUMMARY

The instructions marked with this symbol (\dagger) have an identical set of addressing modes, which are encoded for brevity. The upper nibble is described in Table 3-14, and the lower nibble is represented by [] . The second nibble's value is described in Table 3-15, and is found beside the applicable addressing mode pair. For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13 H .

Table 3-14. Instruction Summary

Instruction and Operation	Address Mode		op code Byte (Hex)	Flags Affected					
	dst	src		C	Z	S	V	D	H
ADC dst, src dst \leftarrow dst $+\mathrm{src}+\mathrm{C}$	\dagger		1[]	*	*	*	*	0	*
$\begin{aligned} & \text { ADD dst, src } \\ & \text { dst } \leftarrow \mathrm{dst}+\mathrm{src} \end{aligned}$	\dagger		0[]	*	*	*	*	0	*
AND dst, src dst \leftarrow dst AND src	\dagger		5[]	-	*	*	0	-	-
$\begin{aligned} & \text { CALL src } \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \\ & \mathrm{PC} \leftarrow \mathrm{src} \end{aligned}$		DA	D6	-	-	-	-	-	-
CALL src $\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 \\ & \mathrm{PC} \leftarrow @ \mathrm{src} \end{aligned}$		IRR	D4	-	-	-	-	-	-
$\begin{array}{\|l} \text { CCF } \\ \mathrm{C} \leftarrow \text { NOT C } \end{array}$			EF	*	-	-	-	-	-
$\begin{aligned} & \text { CLR dst } \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \hline \text { B0 } \\ & \text { B1 } \end{aligned}$	-	-	-	-	-	-
COM dst dst \leftarrow NOT dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0	-	-
$\begin{aligned} & \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	\dagger		A[]	*	*	*	*	-	-
DA dst dst \leftarrow DA dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	-	-	-
$\left\lvert\, \begin{aligned} & \text { DEC dst } \\ & \text { dst } \leftarrow \text { dst }-1 \end{aligned}\right.$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \hline 00 \\ & 01 \end{aligned}$	-	*	*	*	-	-
DECW dst dst \leftarrow dst -1	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-	*	*	*	-	-

Table 3-14. Instruction Summary (Continued)

Instruction and Operation	Address Mode		op codeByte (Hex)	Flags Affected					
	dst	src		C	Z	S	V	D	H
$\begin{aligned} & \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$			8F	-	-	-	-	-	-
DJNZ, dst, src r RA dst \leftarrow dst -1 if $\mathrm{dst} \neq 0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{src}$ Range: $-128 \leq \mathrm{src} \leq 127$	RA		$\begin{gathered} \mathrm{rA} \\ (\mathrm{r}=0-\mathrm{F}) \end{gathered}$	-	-	-	-	-	-
$\left\lvert\, \begin{aligned} & \operatorname{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}\right.$			9F	-	-	-	-	-	-
HALT			7F	-	-	-	-	-	-
INC dst $\mathrm{dst} \leftarrow \mathrm{dst}+1$	$\begin{gathered} \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{gathered} \mathrm{rE} \\ (\mathrm{r}=0-\mathrm{F}) \\ 20 \\ 21 \end{gathered}$	-	*	*	*	-	-
INCW dst dst \leftarrow dst +1	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$		$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	-	*	*	*	-	-
$\begin{aligned} & \text { IRET } \\ & \text { FLAGS } \leftarrow \text { SP; } \\ & \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{PC} \leftarrow @ \mathrm{SP} ; \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 ; \\ & \mathrm{IMR}(7) \leftarrow 1 \end{aligned}$			BF	*	*	*	*	*	*
JP cc, src if cc is true, then $\mathrm{PC} \leftarrow \mathrm{src}$		DA	$\begin{gathered} \mathrm{ccD} \\ (\mathrm{cc}=0-\mathrm{F}) \end{gathered}$	-	-	-	-	-	-
$\left\lvert\, \begin{aligned} & \mathbf{J P} \text { src } \\ & \mathrm{PC} \leftarrow @ \text { src } \end{aligned}\right.$		IRR	30	-	-	-	-	-	-
JR cc, src if cc is true, then $\mathrm{PC} \leftarrow \mathrm{PC}+$ src Range: $-128 \leq \operatorname{src} \leq 127$		RA	$\begin{gathered} \mathrm{ccB} \\ \mathrm{c}=0-\mathrm{F} \end{gathered}$	-	-	-	-	-	-

Table 3-14. Instruction Summary (Continued)

Instruction and Operation	Address Mode		op codeByte (Hex)	Flags Affected					
	dst	src		C	Z	S	V	D	H
LD dst, src dst \leftarrow src	$\begin{gathered} \mathrm{r} \\ \mathrm{r} \\ \mathrm{R} \\ \\ \mathrm{r} \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{Ir} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{IR} \end{gathered}$	Im R r X r Ir r R IR IM IM R	$\begin{gathered} \text { r C } \\ \text { r } 8 \\ \text { r } 9 \\ (\mathrm{r}=0-\mathrm{F}) \\ \mathrm{C} 7 \\ \text { D7 } \\ \text { E3 } \\ \text { F3 } \\ \text { E4 } \\ \text { E5 } \\ \text { E6 } \\ \text { E7 } \\ \text { F5 } \end{gathered}$	-	-	-	-	-	-
$\begin{aligned} & \text { LDC dst, src } \\ & \text { dst } \leftarrow \text { src } \end{aligned}$	$\begin{gathered} \mathrm{r} \\ \mathrm{lrr} \end{gathered}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \end{gathered}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \text { LDCI dst, src } \\ & @ \mathrm{dst} \leftarrow @ \mathrm{src} \\ & \mathrm{dst} \leftarrow \mathrm{dst}+1 \\ & \mathrm{src} \leftarrow \mathrm{src}+1 \end{aligned}$	$\begin{aligned} & \text { Ir } \\ & \text { lrr } \end{aligned}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \end{gathered}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	-	-	-	-	-	-
NOP			FF	-	-	-	-	-	-
OR dst, src dst \leftarrow dst OR src	\dagger		4[]	-	*	*	0	-	-
$\begin{aligned} & \text { POP dst } \\ & \text { dst } \leftarrow \text { @ SP } \\ & \text { SP } \leftarrow \mathrm{SP}+1 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-	-	-	-	-	-
PUSH src $\mathrm{SP} \leftarrow \mathrm{SP}-1$ $@ \mathrm{SP} \leftarrow \mathrm{src}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-	-	-	-	-	-
$\left\lvert\, \begin{aligned} & \mathbf{R C F} \\ & \mathrm{C} \leftarrow 0 \end{aligned}\right.$			CF	0	-	-	-	-	-
$\begin{aligned} & \text { RET } \\ & \mathrm{PC} \leftarrow @ \mathrm{SP} ; \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$			AF	-	-	-	-	-	-
RL dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 90 \\ & 91 \end{aligned}$	*	*	*	*	-	-

Table 3-14. Instruction Summary (Continued)

Instruction and Operation	Address Mode		op codeByte (Hex)	Flags Affected					
	dst	src		C	Z	S	V	D	H
RLC dst $\mathrm{C} \leqslant-\sqrt{7} \quad 0$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	*	*	*	*	-	-
$\mathbf{R R}$ dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	*	*	*	*	-	-
$\mathbf{R R C} \text { dst }$ $\rightarrow C \rightarrow 7 \quad 0$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \end{aligned}$	*	*	*	*	-	-
$\begin{aligned} & \text { SBC dst, src } \\ & \text { dst } \leftarrow \mathrm{dst}-\mathrm{src}- \\ & \mathrm{C} \end{aligned}$	\dagger		3[]	*	*	*	*	1	*
$\begin{aligned} & \mathbf{S C F} \\ & \mathrm{C} \leftarrow 1 \end{aligned}$			DF	1	-	-	-	-	-
SRA dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	*	*	*	0	-	-
$\begin{aligned} & \mathbf{S R P} \operatorname{src} \\ & \mathrm{RP} \leftarrow \mathrm{src} \end{aligned}$	Im		31	-	-	-	-	-	-
STOP			6F	-	-	-	-	-	-
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst } \leftarrow \text { dst }- \text { src } \end{aligned}$	\dagger		2[]	*	*	*	*	1	*
SWAP dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	-	*	*	-	-	-
TCM dst, src (NOT dst) AND src	\dagger		6[]	-	*	*	0	-	-
TM dst, src dst AND src	\dagger		7[]	-	*	*	0	-	-
WDT			5F	-	-	-	-	-	-
XOR dst, src dst \leftarrow dst XOR src	\dagger		7[]	-	*	*	0	-	-

Table 3-15. Lower Nibble Values

Address Mode dst		src
op code Nibble		
r	r	$[2]$
R	R	$[3]$
R	IR	$[4]$
R	IM	$[5]$
IR	IM	$[7]$

Figure 3-2, which follows, illustrates the Op Code map.

OP CODE MAP
LOWER NIBBLE (HEX)

Notes:
All $\mathbf{Z 8}^{\text {PLus }}$ instructions execute in ten XTAL clock cycles, ($1 \mu \mathrm{~S}$ at 10 MHz).

Blank areas are reserved and execute as NOP.

* 2-byte instruction appears as a 3-byte instruction.

Legend:
R $=8$-bit Addr
$r=4-$ bit Addr
R1 or r1 = Dst Addr
R2 or r2 $=$ Src Addr
Sequence:
op code,
First Operand, Second Operand

Figure 3-2. Op Code Map

INSTRUCTION DESCRIPTION AND FORMATS

The following section lists each instruction set, and describes the:

- Instruction Format
- Operation performed
- Flag Conditions
- Examples of the code

The format for the instruction uses the following conventions:

NOTE: The bytes shown in the boxes are in machine code order. The ZiLOG assembler always requires the format OPC, dst, src.

Address modes R or IR can be used to specify a 4-bit working register. In this format, the source or destination working-register operand is specified by adding $1110 \mathrm{~B}(\mathrm{EH})$ to the High nibble of the operand. For example, if working register R12 (CH) is the destination operand, then ECH is used as the destination operand in the Op Code.

Address mode IRR can be used to specify a 4-bit working register Pair. In this format, the destination working register Pair operand is specified by adding 1110B (EH) to the High nibble of the operand. For example, if working register Pair RR12 (CH) is the destination operand, then ECH is used as the destination operand in the Op Code.

E	dst

ADC

Add with Carry

Instruction Format:

ADC dst, src

				OPC (Hex)	Address Mode dst src		
OPC	dst	src		12	r	r	
						Ir	
OPC	src		dst	1415	R	RIR	
OPC	dst		src	16	R	IM	
			17	IR	IM		

Operation:

```
dst \leftarrow dst + src + C
```

The source operand, along with the setting of the Carry (C) Flag, is added to the destination operand. Two's complement addition is performed. The sum is stored in the destination operand. The contents of the source operand are not changed. In multiple precision arithmetic, this instruction permits the carry from the addition of low order operands to be carried into the addition of high order operands.

Flags:

When the instruction is executed, the flags are set as follows:

C: $\quad 1$ if a value is carried from the most signigicant bit of the result; otherwise, 0 .
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S : $\quad 1$ if the result is a negative value; otherwise, 0 .
V: 1 if an arithmetic overflow occurs (both operands have the same sign and the result has the opposite sign; otherwise, 0 .
D: 0 .
H: 1 if a value is carried from the most significant bit of the low-order four bits of the result; otherwise, 0 .

ZiLOG

ADC Add with Carry

Example: Working register R3 contains 16H. The C flag is set to 1 . Working register R11 contains 20 H . The following statement leaves the value 37 H in working register R 3 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADC R3, R11
Op Code: 12 3B.
Example: Working register R16 contains 16H. The C flag is not set. Working register R10 contains 20 H . Register 20 H contains 11 H . The following statements leave the value 27 H in working register R16; the C, Z, $\mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADC R16, @R10
Op Code: 13 FA
Example: Register 34H contains 2EH. The C flag is set. Register 12H contains 1BH. The following statement leaves the value 4 AH in register 34 H . The H flag is set, and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and D flags are set to 0 .

ADC 34H, 12H
Op Code: 141234
Example: Register 4BH contains 82H. The C flag is set. Working register R3 contains 10H. Register 10H contains 01 H . The following statement leaves the value 84 H in register 4 BH . The S flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADC 4BH, @R3
Op Code: 15 E3 4B

Z8 ${ }^{\text {PLus }}$ User's Manual

Address Space

ADC

Add with Carry

Example: Register 6CH contains 2AH. The C flag is not set. The following statement leaves the value 2DH in register 6 CH . The $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADC 6CH, \#03H
Op Code: 16 6C 03
Example: Register D4H contains 5FH. Register 5FH contains 4CH. The C flag is set. The following statement leaves the value 4 FH in register 5 FH . The $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

```
ADC @D4H, #O2H
Op Code: 17 D4 02
```


Instruction Format:

```
ADD dst, src
```


Operation:

```
dst \leftarrow dst + src
```

The source operand is added to the destination operand. Two's complement addition is performed. The sum is stored in the destination operand. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:
$\mathrm{C}: \quad 1$ if a value is carried from the most significant bit of the result; otherwise, 0 .
$\mathrm{Z}: \quad 1$ et if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if the result is negative; otherwise, 0 .
V : 1 if an arithmetic overflow occurs(both operands have the same sign and the result has the opposite sign); otherwise, 0 .
D: 0 .
H: 1 if a value is carried from the most significant bit of the result's low-order four bits; otherwise, 0 .

Address Space
ZiLOG

ADD
 Add

Example: Working register R3 contains 16H. Working register R11 contains 20 H . The following statement leaves the value 36 H in working register R 3 . The $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, D, and H flags are set to 0 .

ADD R3, R11
Op Code: 02 3B
Example: Working register R16 contains 16H. Working register R10 contains 20H. Register 20H contains 11 H . The following statement leaves the value 27 H in working register R16. The C, $\mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADD R16,@R10
Op Code: 03 FA
Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement leaves the value 49 H in register 34 H . The H flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and D flags are set to 0 .

ADD 34H,12H
Op Code: 041234
Example: Register 4BH contains 82 H . Working register R3 contains 10 H . Register 10 H contains 01 H . The following statement leaves the value 83 H in register 4 BH . The S flag is set, and the $\mathrm{C}, \mathrm{Z}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADD 3EH, @R3
Op Code: 05 E3 4B
Example: Register 6CH contains 2AH. The following statement leaves the value 2DH in register 6CH. The $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADD 6CH, \#O3H
Op Code: 06 6C 03
Example: Register D4H contains 5FH. Register 5FH contains 4CH. The following statement leaves the value 4 EH in register 5 FH . The $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}, \mathrm{D}$, and H flags are set to 0 .

ADD @D4H, \#O2H
Op Code: 07 D4 02

AND
 Logical AND

Instruction Format:

```
AND dst, src
```

OPC (Hex)	Address Mode	
dst	src	
52	r	r
53	r	Ir
54	R	R
55	R	IR
56	R	IM
57	IR	IM

Operation:

```
dst \leftarrow dst AND src
```

The source operand and the destination operandare processed with a logical AND operation. The result is a 1 stored whenever the corresponding bits in the two operands are both 1 ; otherwise, a 0 is stored. The result is stored in the destination operand. The contents of the source register are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:

C : The value set by the preceding instruction.
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: 0
$\mathrm{D}: \quad$ The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: Working register R1 contains $34 \mathrm{H}(00111000 \mathrm{~B})$ and working register R14 contains 4DH (10001101). The following statement leaves the value $04 \mathrm{H}(00001000)$ in working register R1. The Z, V, and S flags are set to 0 .

```
AND R1, R14
```

Op Code: 52 1E

Address Space
ZiLOG

AND
 Logical AND

Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register 7BH contains 6AH (01101010B). The following statement leaves the value 68H (01101000B) in working register R 4 . The Z, V, and S flags are set to 0 .

AND R4, @R13
Op Code: 53 4D
Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH (00001010). The following statement leaves the value 00 H (00000000 B) in register 3AH. The Z flag is setto 1 , and the V and S flags are cleared.

AND 3AH, 42H
Op Code: 5442 3A
Example: If working register R5 contains F0H (11110000B). Register 45H contains 3AH. Register 3AH contains 7 FH (01111111 B). The following statement leaves the value $70 \mathrm{H}(01110000 \mathrm{~B})$ in working register $R 5$. The Z, V, and S flags are set to 0 .

AND R5, @45H
Op Code: 5545 E5
Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value FOH (11110000B) in register 7AH. The S flag is set to 1 , and the Z and V flags are set to 0 .

AND 7AH, \#FOH
Op Code: 56 7A FO
Example: Working register R3 contains the value 3EH. Register 3EH contains the value ECH (11101100B). The following statement leaves the value 04 H (00000100 B) in register 3EH. The Z, V, and S flags are set to 0 .

AND @R3, \#05H
Op Code: 57 E3 05

ZiLOG

Instruction Format:

CALL dst

| OPC
 OPC
 OPC (Hex) Address Mode
 dst
 dst D6 |
| :---: | :---: | :---: | :---: |

Operation:

```
SP \leftarrow SP - 2
@SP}\leftarrow\textrm{PC
PC}\leftarrow\textrm{dst
```

The Stack pointer (SP) is decremented by 2. The current contents of the program counter (PC) (the address of the first instruction following the CALL instruction) are pushed onto the top of the Stack. The specified destination address is then loaded into the PC, which points to the first instruction of the procedure.

At the end of the procedure a return (RET) instruction can be used to return to the original program flow. RET pops the top of the Stack and replaces the original value into the PC.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.

CALL
 Call Procedure

Example: The contents of the PC are 1A47H and the contents of the SP (registers FEH and FFH) are 3002H. The following statements cause the SP to be decremented to $3000 \mathrm{H}, 1 \mathrm{~A} 4 \mathrm{AH}$. The address following the CALL instructionis stored in external data memory at addresses 3000 and 3001 H . The PC is loaded with 3521 H and now points to the address of the first statement in the procedure to be executed.

CALL 3521H
Op Code: D6 3521
Example: The contents of the PC are 1A47H. The contents of the SP (register FFH) are 72 H . The contents of register A 4 H are 34 H . The contents of register pair 34 H are 3521 H . The following statements cause the SP to be decremented to $70 \mathrm{H}, 1 \mathrm{~A} 4 \mathrm{AH}$. The address following the CALL instructionis stored in R70H and 71 H . The PC is loaded with 3521 H and now points to the address of the first statement in the procedure to be executed

CALL @A4H
Op Code: D4 A4

Instruction Format:

CCF

Operation:

```
C }\leftarrow NOT 
```

The C flag is complemented. If $\mathrm{C}=1$, then it is changed to $\mathrm{C}=0$; or, if $\mathrm{C}=0$, then it is changed to $\mathrm{C}=1$.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction is complemented.
Z : \quad The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The C flag contains a 0 . The following statement changes the C flag from $\mathrm{C}=0$ to $\mathrm{C}=1$.
CCF
Op Code: EF

Address Space

CLR
 Clear

Instruction Format:

CLR dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

dst $\leftarrow 0$
The destination operand is set to 00 H .

Flags

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
$\mathrm{D}: \quad$ The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: Working register R6 contains AFH. The following statement leaves the value 00 H in working register R6.

CLR R6
Op Code: BO E6
Example: Register A5H contains the value 23H. Register 23H contains the value FCH. The following statement leaves the value 00 H in register 23 H .

CLR @A5H
Op Code: B1 A5

COM
 Complement

Instruction Format:

COM dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

```
dst \leftarrow NOT dst
```

The contents of the destination operand are complemented (one's complement). All 1 bits are changed to 0 , and all 0 bits are changed to 1 .

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if result bit 7 is set; otherwise, 0 .
V: 0
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: Register 08H contains 24H (00100100B). The following statement leaves the value DBH (11011011) in register 08 H . The S flag is set to 1 , and the Z and V flags are set to 0 .

COM 08
Op Code: 6008
Example: Register 08H contains 24 H , and register 24 H contains FFH (11111111B). The following statement leaves the value $00 \mathrm{H}(00000000 \mathrm{~B})$ in register 24 H . The Z flag is set to 1 , and the V and S flags are set to 0 .

Address Space

CP
 Compare

Instruction Format:

CP dst, src

				OPC (Hex)	Address Mode	
					dst	src
				A2	r	r
OPC	dst	src		A3	r	Ir
				A4	R	R
OPC			dst	A5	R	IR
OPC			src	$\begin{aligned} & \text { A6 } \\ & \text { A7 } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \mathrm{IM} \\ & \mathrm{IM} \end{aligned}$

Operation:

dst - src
The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:
$\mathrm{C}: \quad 1$ if a value is carried from the most significant bit of the result, otherwise, 0 .
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0 .
V: 1 if arithmetic overflow occurs; otherwise, 0 .
D : The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Working register R3 contains 16H. Working register R11 contains 20 H . The following statement sets the C and S flags to 1 , and the Z and V flags are set to 0 .

CP R3, R1
Op Code: A2 3B
Example: Working register R15 contains 16H. Working register R10 contains 20H. Register 20H contains 11 H . The following statement sets the $\mathrm{C}, \mathrm{Z}, \mathrm{S}$, and V flags to 0 .

CP R16, @R10
Op Code: A3 FA
Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement sets the C, Z, S, and v flags to 0 .

CP $34 \mathrm{H}, 12 \mathrm{H}$
Op Code: A4 1234
Example: Register 4BH contains 82 H . Working register R3 contains 10 H . Register 10 H contains 01 H . The following statement sets the S flag to 1 , and the C, Z, and V flags are set to 0 .

CP 4BH, @R3
Op Code: A5 E3 4B
Example: Register 6 CH contains 2 AH . The following statement sets the Z flag to 1, and the C, S, and V flags are se to 0 .

CP 6CH, \#2AH
Op Code: A6 6C 2A
Example: Register D4H contains FCH. Register FCH contains 8FH. The following statement sets the V flag to 1 , and the C, Z, and S flags are set to 0 .

CP @D4H, 7FH
Op Code: A7 D4 FF

DA

Decimal Adjust

Instruction Format:

DA dst

OPC	OPC (Hex)

Operation:

dst \leftarrow DA dst
The destination operand is adjusted to two 4-bit BCD digits following a binary addition or subtraction operation on BCD-encoded bytes. For addition (ADD and ADC) or subtraction (SUB and SBC), Table 3-14 indicates the operation performed.

Table 3-16. DA Operation Reference

Prior Instruction	Flags Before DA			Result Before		Adjustment Added	Result After		C Flag After
	C	H	D	[7...4]	[3...0]		[7...4]	[3...0]	
ADD or ADC	0	0	0	0-9	0-9	00	0-9	0-9	0
	0	0	0	0-8	A-F	06	1-9	0-5	0
	0	1	0	1-9	0-3	06	1-9	6-9	0
	0	0	0	A-F	0-9	60	0-5	0-9	1
	1	0	0	0-2	0-9	60	6-8	0-9	1
	0	0	0	9-F	A-F	66	0-5	0-5	1
	0	1	0	A-F	0-3	66	0-5	6-9	1
	1	0	0	0-2	A-F	66	6-9	0-5	1
	1	1	0	0-3	0-3	66	6-9	6-9	1
SUB or SBC	0	0	1	0-9	0-9	00	0-9	0-9	0
	0	1	1	0-8	6-F	FA	0-8	0-9	0
	1	0	1	7-F	0-9	A0	1-9	0-9	1
	1	1	1	6-F	6-F	9A	0-9	0-9	1

Note: If the destination operand is not the result of a valid addition or subtraction of $B C D$ digits, the result is meaningless.

Z8 ${ }^{\text {PLus }}$
 User's Manual
 Address Space

DA
Decimal Adjust

Flags:

When the instruction is executed, the flags are set as follows:

C: $\quad 1$ if a value is carried or borrowed during the prior addition or subtaction.
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0 .
V : The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.

Example: Addition is performed using the BCD values 15 and 27, the result should be 42 . The sum actually obtained is incorrect, however, when the binary representations are added in the destination location using standard binary arithmetic.

$$
\begin{aligned}
00010101 & =15 \mathrm{H} \\
+\quad 00100111 & =27 \mathrm{H} \\
\hline 00111100 & =3 \mathrm{CH}
\end{aligned}
$$

When the result of the addition is stored in Register 5FH, the following statement adjusts this result so the correct BCD representation is obtained.

DA 5FH
Op Code: 4145

$$
\begin{aligned}
00111100 & =3 \mathrm{CH} \\
+\quad 00000110 & =06 \mathrm{H} \\
\hline 01000010 & =42 \mathrm{H}
\end{aligned}
$$

Register 5F now contains the value 42 H . The C, Z, and S flags are set to 0 .

DA

Decimal Adjust

Example: A subtraction is performed on $B C D$ values to subtract 17 from 25, the result should be 8 . The result is incorrect when standard binary subtraction is performed on the binary representations of the BCD numbers.

$$
+\begin{aligned}
& 00100101=25 \mathrm{H} \\
& 00010111=17 \mathrm{H} \\
& \hline 00001110=0 \mathrm{EH}
\end{aligned}
$$

Register 45 H contains the value 5 FH . The result of the subtraction is stored in 5 FH . The following statements adjust the result so the correct BCD representation is obtained.

DA @45H
Op Code: 4045

$$
\begin{aligned}
00001110 & =0 \mathrm{EH} \\
+\quad 11111010 & =\mathrm{FAH} \\
\hline 00001000 & =08 \mathrm{H}
\end{aligned}
$$

Register 5FH now contains the value 08 H . The C, Z, and S flags are set to 0 .

Instruction Format:

DEC dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline 00 \\ & 01 \end{aligned}$	R IR

Operation:

```
dst \leftarrowdst - 1
```

The contents of the destination operand are decremented by one.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0 .
V: 1 if arithmetic overflow occurs; otherwise, 0 .
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: Working register R10 contains 2AH. The following statement leaves the value 29H in working register R10. The Z, V, and S flags are set to 0 .

DEC R10
Op Code: 00 EA
Example: Register B3H contains CBH. Register CBH contains 01 H . The following statement leaves the value 00 H in Register CBH. The Z flag is set to 1 , and the V and S flags are set to 0 .

```
DEC @B3H
Op Code: 01 B3
```


DECW

Decrement Word

Instruction Format:

DECW dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline 80 \\ & 81 \end{aligned}$	$\begin{gathered} \hline \mathrm{RR} \\ \mathrm{IR} \end{gathered}$

Operation:

```
dst \leftarrow dst - 1
```

The contents of the destination (which must be an even address) operand are decremented by one. The destination operand can be a Register Pair or a working register Pair.

Flags:

When the instruction is executed, the flags are set as follows:
C : The value set by the preceding instruction.
Z: $\quad 1$ if the result is 0 ; otherwise, 0
S: $\quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0
V: 1 if arithmetic overflow occurs; otherwise, 0
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example:Register pair 30H and 31H contain the value 0AF 2 H . The statement leaves the value 0 AF 1 H in register pair 30 H and 31 H . The Z, V, and S flags are set to 0 .

DECW 30H

Op Code: 8030
Example: Working register R0 contains 30H. Register Pair 30H and 31H contain the value FAF3H. The following statement leaves the value FAF2H in Register Pair 30H and 31H. The S flag is set, and the Z and V flags are cleared.

```
DECW @RO
Op Code: 81 EO
```

Disable Interrupts

Instruction Format:

DI

OPC (Hex)

OPC
8F

Operation:

IMASK (7) $\leftarrow 0$
Bit 7 of control register FBH (the Interrupt Mask Register) is reset to 0 . All interrupts are disabled, although they remain potentially enabled. For example, the Global Interrupt Enable is cleared, but not the individual interrupt level enables.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V : The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: Control register FBH contains 8AH (10001010B) (interrupts IRQ1 and IRQ3 are enabled). The following statement sets control register FBH to 0AH (00001010 B) and disables all interrupts.

DI

Op Code: 8F

DJNZ

Decrement And Jump If Non-zero

Instruction Format:

```
DJNZ r, dst
```


Operation:

```
r \leftarrow r - 1;
If r f 0, PC \leftarrow PC + dst
```

The specified working register serves as a counter and is decremented. If the contents of the specified working register are not 0 after decrementing, then the relative address is added to the Program Counter (PC) and control passes to the statement whose address is now in the PC. The range of the relative address is +127 to -128 . The original value of the PC is the address of the instruction byte following the DJNZ statement. When the specified working register counter reaches 0 , control falls through to the statement following the DJNZ instruction.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: DJNZ is typically used to control a loop of instructions. In this example, 12 bytes are moved from one buffer area in the register file to another. The steps involved are:

1. Load 12 into the counter (working register R6).
2. Set up the loop to perform the moves.
3. End the loop with a DJNZ instruction.

DJNZ
 Decrement And Jump If Non-zero

The assembly listing required for this routine is as follows:

	Assembly	Op Code
	LD R6, \#12	6E 0C
LOOP :	LD R9 \% 20 (R6)	C7 5630
	LD \%14 (R6), R9	D7 5610
	DJNZ R6, LOOP	6 AF 8

Assembly6E 0C
LOOP :LD \%14 (R6), R96A F8

El

Enable Interrupts

Instruction Format:

EI

OPC (Hex)

OPC
9F

Operation:

IMASK $(7) \leftarrow 1$
Bit 7 of Control Register FBH (the Interrupt Mask Register) is set to 1 . This allows potentially enabled interrupts to become enabled.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: Control Register FBH contains 0AH (00001010) (interrupts IRQ1 and IRQ3 are selected). The following statement sets Control Register FBH to 8AH (10001010B) enabling IRQ1 and IRQ3.

```
EI
Op Code: 9F
```


Z8 ${ }^{\text {PLus }}$ User's Manual

Instruction Format:

HALT

OPC (Hex)

OPC
7F

Operation:

The HALT instruction turns off the internal CPU clock, but not the XTAL oscillation. The peripherals and interrupt logic remain active. Operation can be restarted by an interrupt or a reset.

Flags:

When the instruction is executed, the flags are set as follows

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: Assuming the Z 8 is in normal operation, the following statements place the Z 8 into HALT mode.
HALT
Op Codes: 7F
NOTE: Unlike the Z 8 , the $\mathrm{Z}^{\mathrm{PLuS}}$ does not require a NOP before the HALT instruction.

INC

Increment

Instruction Format:

INC dst

Operation:

```
dst \leftarrow dst + 1
```

The contents of the destination operand are incremented by one.

Flags:

When the instruction is executed, the flags are set as follows:
C : The value set by the preceding instruction.
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S : $\quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0 .
V: 1 if arithmetic overflow occurs; otherwise, 0 .
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.

Example: Working register R10 contains 2AH. The following statement leaves the value 2BH in working register R10. The Z, V, and S flags are set to 0 .

INC R10
Op Code: AE
Example: Register B3H contains CBH. The following statement leaves the value CCH in register CBH. The S flag is set to 1 , and the Z and V flags are set to 0 .

INC B3H
Op Code: 20 B3
Example: Register B3H contains CBH. Register CBH contains FFH The following statement leaves the value 00 H in register CBH. The Z flag is set to 1 , and the V and S flags are set to 0 .

INC @B3H
Op Code: 21 B3

Address Space
ZiLOG

INCW

Increment Word

Instruction Format:

INCW dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline \text { A0 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \mathrm{RR} \\ \mathrm{IR} \end{gathered}$

Operation:

dst \leftarrow dst +1
The contents of the destination (which must be an even address) operand is incremented by one. The destination operand can be a Register Pair or a working register Pair.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
$S: \quad 1$ if bit 7 of the result is 1 (negative); otherwise, 0 .
V : $\quad 1$ if arithmetic overflow occurs; otherwise, 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Register pairs 30H and 31H contain the value 0AF2H. The following statement leaves the value 0 AF 3 H in register pair 30 H and 31 H . The Z, V, and S flags are set to 0 .

INCW 30H
Op Code: AO 30
Example: Working register R0 contains 30 H . Register pairs 30 H and 31 H contain the value FAF 3 H . The following statement leaves the value FAF 4 H in register pair 30 H and 31 H . The S flag is set, and the Z and V flags are set to 0 .

INCW @RO
Op Code: A1 EO

ZiLOG

Instruction Format:

IRET

OPC (Hex)

OPC
BF

Operation:

```
FLAGS \leftarrow @SP
SP}\leftarrow\textrm{SP}+
PC }\leftarrow@S
SP}\leftarrow\textrm{SP}+
IMR (7) \leftarrow 1
```

This instruction is issued at the end of an interrupt service routine. It restores the Flag Register (Control Register FCH) and the PC. It also re-enables any interrupts that are potentially enabled.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value prior to the issuance of the interrupt.
Z : The value prior to the issuance of the interrupt.
S : The value prior to the issuance of the interrupt.
V : The value prior to the issuance of the interrupt.
D: The value prior to the issuance of the interrupt.
H : The value prior to the issuance of the interrupt.

Example: Stack Pointer Low (register FFH) currently contains the value 45H. Register 45H contains the value 00 H . Register 46H contains 6FH. Register 47 Contains E4H. The following statement restores the Flags Register (FCH) with the value 00 H , restores the PC with the value 6 FE 4 H , re-enables the interrupts, and sets the Stack Pointer Low to 48 H . The next instruction to be executed is at location 6 FE 4 H .

IRET
Op Code: BF

Address Space

JP
Jump

Instruction Format:

JP cc, dst

Operation:

If condition code is true, then $P C \leftarrow$ dst
A conditional jump (JP) transfers program control to the destination address if the condition specified by cc is true. Otherwise, the instruction following the JP instruction is executed. See page 3-8 for a list of condition codes.

NOTE: Op Code 30 H (JP IRR) is unconditional only.
An unconditional jump simply replaces the contents of the Program Counter with the contents of the register pair specified by the destination operand. Program Control then passes to the instruction addressed by the PC.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D : The value set by the preceding instruction.
H : The value set by the preceding instruction.

Example: The Carry flag is 1. The following statement replaces the contents of the Program Counter with 1520 H and transfers program control to that location. If the Carry flag had not been 1, control would have fallen through to the statement following the JP instruction.

JP C, 1520 H
Op Code: 7D 1520
Example:Working register pair RR2 contains the value 3 F 45 H . The following statement replaces the contents of the PC with the value 3 F 45 H and transfers program control to that location.

```
JP @RR2
Op Code: 30 E2
```


JR

Jump Relative

Instruction Format:

```
JR cc, dst
```

			OPC (Hex)	Address Mode dst
cc	OPC	dst	ccB	
$(\mathrm{cc}=0$ to F)				

Operation:

```
If cc is true, PC \leftarrow PC + dst
```

If the condition specified by the CC is true, the relative address is added to the PC and control passes to the instruction located at the address specified by the PC (See page 3-8 for a list of condition codes). Otherwise, the instruction following the JR instruction is executed. The range of the relative address is +127 to -128 , and the original value of the PC is taken to be the address of the first instruction byte following the JR instruction.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: The result of the last arithmetic operation executed is negative. The next nine bytes are skipped with the following statement. If the result is not negative, execution continues with the instruction following the JR instruction.

JR MI, 9
Op Code: 5B 09
Example: A short form of a jump -45 is:
JR -45
Op Code: 8B D3
The instruction jumps backwards 45 bytes, unconditionally. The condition code is blank in this case, and is assumed to be always true.

Instruction Format:

LD dst, src

OPC (Hex)	Address Mode	
rC	r	IM
r8	r	R
r9	R^{*}	r
$\mathrm{r}=0$ to F		
E3	r	Ir
F3	Ir	r
E4	R	R
E5	R	IR
E6	R	IM
E7	IR	IM
F5	IR	R
C7	r	X
D7	X	r

*For OPC r9H, only a full 8-bit register can be used. The ZiLOG assember automatically uses the r 8 Op Code for an instruction like:
LD R0,R1.

Address Space

LD

Load

Operation:

```
dst \leftarrow src
```

The contents of the source operand are loaded into the destination operand. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The following statement loads the value 34H into working register R15.

LD R15, \#34H
Op Code: FC 34
Example: Register 34H contains the value FCH. The following statement loads the value FCH into working register R14. The contents of register 34H are not changed.

```
LD R14, 34H
Op Code: F8 34
```

Example: Working register R14 contains the value 45H. The following statement loads the value 45 H into register 34 H . The contents of working register R14 are not changed.

LD 34H, R14
Op Code: E9 34
Example: Working register R12 contains the value 34H. Register 34H contains the value FFH. The following statement loads the value FFH into working register R13. The contents of working register R12 and register 34 H are not changed.

```
LD R13, @R12
Op Code: E3 DC
```

Example: Working register R13 contains the value 45 H. Working register R12 contains the value 00 H . The following statement loads the value 00 H into register 45 H . The contents of working register R12 and working register R13 are not changed.

```
LD @R13, R12
Op Code: F3 DC
```

Example: Register 45H contains the value CFH. The following statement loads the value CFH into register 34 H . The contents of register 45 H are not changed.

```
LD 34H, 45H
Op Code: E4 45 34
```

Example: Register 45H contains the value CFH. Register CFH contains the value FFH. The following statement loads the value FFH into register 34 H . The contents of register 45 H and register CFH are not changed.

```
LD 34H, @45H
Op Code: E5 45 34
```

Example: The following statement loads the value A4H into Register 34H.
LD 34H, \#0A4H
Op Code: E6 34 A4
Example: Working register R14 contains the value 7FH. The following statement loads the value FCH into Register 7 FH . The contents of working register R14 are not changed.

```
LD @R14, #OFCH
Op Code: E7 EE FC
```


LD

Load

Example: Register 34 H contains the value CFH. Register 45 H contains the value FFH. The following statement loads the value FFH into register CFH. The contents of register 34 H and register 45 H are not changed.

```
LD @34H, 45H
Op Code: F5 45 34
```

Example: Working register R0 contains the value 08 H . Register $2 \mathrm{CH}(24 \mathrm{H}+08 \mathrm{H}=2 \mathrm{CH})$ contains the value 4 FH . The following statement loads working register R10 with the value 4 FH . The contents of working register R0 and Register 2CH are not changed.

LD R10, 24H(R0)
Op Code: C7 A0 24
Example: Working register R0 contains the value 0 BH . Working register R10 contains 03 H . The following statement loads the value 03 H into register $\mathrm{FBH}(\mathrm{FOH}+0 \mathrm{BH}=\mathrm{FBH})$. Since this is the Interrupt Mask Register, the LOAD statement has the effect of enabling IRQ0 and IRQ1. The contents of working registers R0 and R10 are unchanged by the load.

LD FOH (RO), R10
Op Code: D7 A0 F0

Instruction Format:

LDC dst, src

			OPC (Hex)	Address Mode dst	src

Operation:

```
dst \leftarrow src
```

This instruction is used to load a byte constant from program memory into a working register, or vice versa. The address of the program memory location is specified by a working register pair. The contents of the source operand are not changed.

Flags

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: Working register pairs R6 and R7 contain the value 30A2H and program memory location 30A2H contains the value 22 H . The following statement loads the value 22 H into working register R 2 . The value of program memory location 30 A 2 H is unchanged by the load.

LDC R2, @RR6
Op Code: C2 26

LDC

Load Constant

Example: Working register R2 contains the value 22 H. Working register pair R6 and R7 contains the value 10 A 2 H . The following statement loads the value 22 H into program memory location 10A2H. The value of working register R2 is unchanged by the load.

LDC @RR6, R2
Op Code: D2 26
NOTE: This instruction format is valid only for MCUs which can write to program memory.

Instruction Format:

LDCI dst, src

			OPC (Hex)	Address Mode dst src	
OPC	dst	src	C3	Ir	Irr
OPC	dst	src	D3	Irr	Ir

Operation:

```
dst \leftarrow src
r \leftarrowr + 1
rr}\leftarrowrr+
```

This instruction is used for block transfers of data between program memory and the Register File. The address of the program memory location is specified by a working register Pair, and the address of the Register File location is specified by working register. The contents of the source location are loaded into the destination location. Both addresses in the working registers are then incremented automatically. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Z8 ${ }^{\text {PLus }}$ User's Manual
 Address Space

 LDCI

 LDCI

 Load Constant Auto-increment

 Load Constant Auto-increment} ZiLOG

Example: Working register pair R6-R7 contains 30A2H, program memory location 30A2H and 30A3H contain 22 H and BCH respectively, and working register R2 contains 20 H . The following statement loads the value 22 H into Register 20H. working register Pair RR6 is incremented to 30A3H and working register R2 is incremented to 21 H .

```
LDCI @R2, @RR6
```

Op Code: C3 26

A second statement loads the value BCH into register 21 H . working register pair RR6 is incremented to 30 A 4 H and working register R 2 is incremented to 22 H .

LDCI @R2, @RR6
Op Code: C3 26
Example: Working register R2 contains 20H. Register 20H contains 22H. Register 21H contains BCH. Working register pair R6-R7 contains 30A2H. The following statement loads the value 22 H into program memory location 30A2H. working register R2 is incremented to 21 H and working register Pair R6-R7 is incremented to 30A3H.

LDCI @RR6, @R2
Op Code: D3 26
A second statement loads the value BCH into program memory location 30A3H. working register R2 is incremented to 22 H and working register pair R6-R7 is incremented to 30 A 4 H .

```
LDCI @RR6, @R2
```

Op Code: D3 26

Instruction Format:

NOP

Operation:

No action is performed by this instruction. It is typically used for timing delays or clearing the pipeline.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.

OR

Logical OR

Instruction Format:

OR dst, src

				OPC (Hex)	Address Mode dst src		
OPC				42	r	r	
	dst	Src		43	r	Ir	
OPC	src		dst	44	R	R	
			45	R	IR		
OPC	dst			src	46	R	IM
			47		IR	IM	

Operation:

```
dst \leftarrow dst OR src
```

The source operand is logically ored with the destination operand and the result is stored in the destination operand. The contents of the source operand are not changed. The OR operation stores a 1 bit whenever either of the corresponding bits in the two operands is a 1 . Otherwise, a 0 bit is stored.

Flags:

When the instruction is executed, the flags are set as follows:
C : The value set by the preceding instruction.
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Working register R1 contains 34H (00111000B). Working register R14 contains 4DH (10001101). The following statement leaves the value BDH (10111101B) in working register R1. The S flag is set to 1 , and the Z and V flags are set to 0 .

OR R1, R14
Op Code: 42 1E
Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register 7B contains 6AH (01101010B). The following statement leaves the value FBH (11111011B) in working register R 4 . The S flag is set to 1 , and the Z and V flags are set to 0 .

OR R4, @R13
Op Code: 43 4D
Example: Register 3AH contains the value F5H (11110101B. Register 42H contains the value 0AH (00001010 B). The following statement leaves the value FFH (11111111B) in register 3AH. The S flag is setto 1 , and the Z and V flags are set to 0 .

OR 3AH, 42H
Op Code: 4442 3A
Example: Working register R5 contains 70H (01110000B). Register 45H contains 3AH. Register 3AH contains 7 FH (01111111 B). The following statement leaves the value 7 FH (01111111 B) in working register R 5 . The Z, V, and S flags are set to 0 .

OR R5, @45H
Op Code: 4545 E5
Example: Register 7AH contains the value F3H (11110111B). The following statement leaves the value $\mathrm{F} 3 \mathrm{H}(11110111 \mathrm{~B}$) in register 7AH. The S flag is set to 1 , and the Z and V flags are set to 0 .

OR 7AH, \#FOH
Op Code: 46 7A FO
Example: Working register R3 contains the value 3EH. Register 3EH contains the value 0CH (00001100 B). The following statement leaves the value ODH (00001101 B) in register 3EH. The Z, V, and S flags are set to 0 .

```
OR @R3, #05H
Op Code: 57 E3 05
```


POP

Pop

Instruction Format:

POP dst

| | | Address Mode
 dst |
| :---: | :---: | :---: | :---: |
| OPC | OPC (Hex) | R |
| | 50 | IR |

Operation:

```
dst \leftarrow @SP
SP}\leftarrow\textrm{SP}+
```

The contents of the location specified by the Stack Pointer (SP) are loaded into the destination operand. The SP is then incremented automatically.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z : The value set by the preceding instruction.
S: The value set by the preceding instruction.
V : The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The SP (Control Registers FEH and FFH) contains the value 70 H . Register 70 H contains 44 H . The following statement loads the value 44 H into register 34 H . After the POP operation, the SP contains 71 H . The contents of register 70 are not changed.

```
POP 34H
Op Code: 50 34
```

Example: The SP (Control Registers FEH and FFH) contains the value 1000H. Memory location 1000H contains 55 H . Working register R6 contains 22 H . The following statement loads the value 55 H into register 22 H . After the POP operation, the SP contains 1001 H . The contents of working register R6 are not changed.

```
POP @R6
Op Code: 51 E6
```


Instruction Format:

```
PUSH src
```

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

```
SP \leftarrow SP - 1
@SP \leftarrow src
```

The contents of the SP (stack pointer) are decremented by one. Then, the contents of the source operand are loaded into the location addressed by the updated SP, adding a new element to the stack.

Flags

:When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: The SP contains 1001H. The following statement stores the contents of Register FCH (the Flag Register) in location 1000 H . After the PUSH operation, the SP contains 1000 H .

```
PUSH FCH
Op Code: 70 FC
```

Example: The SP contains 61H. Working register R4 contains FCH. The following statement stores the contents of register FCH (the Flag Register) in location 60 H . After the PUSH operation, the SP contains 60 H .

```
PUSH @R4
Op Code: 71 E4
```


RCF

Reset Carry Flag

Instruction Format:

RCF

OPC

Operation:

$$
C \leftarrow 0
$$

The C flag is reset to 0 , regardless of its previous value.

Flags:

When the instruction is executed, the flags are set as follows:
C: 0
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: The C flag is currently set to 1 . The following statement resets the Carry flag to 0 .
RCF
Op Code: CF

Instruction Format:

RET

OPC (Hex)

OPC
AF

Operation:

```
PC \leftarrow @SP
SP}\leftarrow\textrm{SP}+
```

This instruction is used to return from a procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer (SP) are popped into the Program Control. The next statement executed is the one addressed by the new contents of the PC. The stack pointer is also incremented by 2.

Flags:

When the instruction is executed, the flags are set as follows:

C : The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.

NOTE: Each PUSH instruction executed within the subroutine should be countered with a POP instruction in order to guarantee the SP is at the correct location when the RET instruction is executed.
Otherwise the wrong address is loaded into the PC and the program does not operate as desired.
Example: SP contains 200 H. Memory location 200 H contains 18 H . Location 201 H contains B5H. The following statement leaves the value 202 H in the SP, and the PC contains 18B5H, the address of the next instruction to be executed.

RET
Op Code: AF

RL

Rotate Left

Instruction Format:

RL dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline 90 \\ & 91 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

```
C}\leftarrow\operatorname{dst (7)
dst(0) \leftarrow dst(7)
dst(1) \leftarrow dst(0)
dst(2) \leftarrow dst(1)
dst(3) \leftarrow dst(2)
dst(4) \leftarrow dst(3)
dst(5) \leftarrow dst(4)
dst(6) \leftarrow dst(5)
dst(7) \leftarrow dst(6)
```

The contents of the destination operand are rotated left by one bit position. The value from bit 7 is moved to the bit 0 position and also into the Carry flag.

Flags:

When the instruction is executed, the flags are set as follows:

C: $\quad 1$ if the bit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to 1).
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V : 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation); otherwise, 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

RL
 Rotate Left

Example: The contents of register C6H are 88H (10001000B). The following statement leaves the value $11 \mathrm{H}(00010001 \mathrm{~B})$ in register C 6 H . The C and V flags are setto 1 , and the S and Z flags are set to 0 .

RL C6H
Op Code: 80 C6
Example: The contents of register C6H are 88H. The contents of register 88H are 44 H (01000100 B). The following statement leaves the value 88 H in register $88 \mathrm{H}(10001000 \mathrm{~B}$). The S and V flags are set to 1 , and the C and Z flags are set to 0 .

RL @C6H
Op Code: 81 C6

RLC

Rotate Left Through Carry

Instruction Format:

RLC dst

| | | Address Mode
 dst |
| :---: | :---: | :---: | :---: |
| OPC OPC (Hex) | R | |
| | 10
 11 | IR |

Operation:

```
C}\leftarrow\mathrm{ dst (7)
dst(0) \leftarrowC
dst(1)}\leftarrowdst(0
dst(2) \leftarrow dst(1)
dst(3) \leftarrow dst(2)
dst(4) \leftarrow dst(3)
dst(5) \leftarrow dst(4)
dst(6) \leftarrow dst(5)
dst(7) \leftarrow dst(6)
```

The contents of the destination operand along with the C flag are rotated left by one bit position. The initial value of bit 7 becomes the value of the C flag and the previous value of the C flag becomes the value of bit 0 .

RLC
 Rotate Left Through Carry

Flags:

When the instruction is executed, the flags are set as follows:

C: 1 if the bit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to $1)$.
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V : 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation); otherwise, 0 .
D: The value set by the preceding instruction.
H : The value set by the preceding instruction.
Example: The C flag is reset. Register C6 contains 8F (10001111B). The following statement leaves register C 6 with the value 1 EH (00011110 B). The C and V flags are set to 1 , and S and Z flags are set to 0 .

RLC C6
Op Code: 10 C6
Example: The C flag is reset. Working register R4 contains C6H. Register C6 contains 8F (10001111B). The following statement leaves register C6 with the value 1 EH (00011110 B). The C and V flags are set to 1 , and S and Z flags are set to 0 .

RLC @R4
Op Code: 11 E4

RR

Rotate Right

Instruction Format:

RR dst

Operation:

```
C}\leftarrow\operatorname{dst}(0
dst(0) \leftarrow dst(1)
dst(1) \leftarrow dst(2)
dst(2) \leftarrow dst(3)
dst(3) \leftarrow dst(4)
dst(4)}\leftarrow\operatorname{dst(5)
dst(5) \leftarrow dst(6)
dst(6) \leftarrow dst(7)
dst(7) \leftarrow dst(0)
```

The contents of the destination operand are rotated to the right by one bit position. The initial value of bit 0 becomes the value of bit 7 and the C flag.

Flags:

When the instruction is executed, the flags are set as follows:

C: $\quad 1$ if the value rotated from the least significant bit position (bit 1) was 1.
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V : 1 if arithmetic overflow occurred (if the sign of the destination operand changed during rotation); otherwise, 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: The contents of working register R6 are 31H (00110001B). The following statement leaves the value $98 \mathrm{H}(10011000 \mathrm{~B}$) in working register R 6 . The C, V, and S flags are set to 1 , and the Z flag is set to 0 .

RR R6
Op Code: EO E6
Example: The contents of register C6 are 31H. The contents of register 31H are 7EH (01111110B). The following statement leaves the value $4 \mathrm{FH}(00111111 \mathrm{~B})$ in register 31 H . The $\mathrm{C}, \mathrm{Z}, \mathrm{V}$, and S flags are set to 0 .

RR @C6
Op Code: E1 C6

RRC

Rotate Right Through Carry

Instruction Format:

RRC dst
Operation:

OPC		OPC (Hex)	Address Mode dst
dst	C 0	R	
C 1	IR		

```
C}\leftarrow\mathrm{ dst(0)
dst(0) \leftarrow dst(1)
dst(1) \leftarrow dst(2)
dst(2) \leftarrow dst(3)
dst(3) \leftarrow dst(4)
dst(4)}\leftarrow\mathrm{ dst(5)
dst(5) \leftarrow dst(6)
dst(6) \leftarrow dst(7)
dst(7) \leftarrowC
```

The contents of the destination operand with the C flag are rotated right by one bit position. The value of the C flag becomes the value of bit 7 ; the value of bit 0 becomes the value of the C flag .

RRC
 Rotate Right Through Carry

Flags:

When the instruction is executed, the flags are set as follows:

C: $\quad 1$ if the bit rotated from the least significant bit position was 1 (that is, bit 0 was 1).
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V : 1 if an arithmetic overflow occurs (the sign of the destination operand changed during rotation); otherwise, 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The contents of register C6H are DDH (11011101B). The C flag is 0 . The following statement leaves the value $6 \mathrm{EH}(01101110 \mathrm{~B}$) in register C 6 H . The C and V flags are set to 1 , and the Z and S flags are set to 0 .

RRC C6H
Op Code: C0 C6
Example: The contents of register 2C are EDH. The contents of register EDH is 02H (00000010B. The C flag is 0 . The following statement leaves the value $01 \mathrm{H}(00000001 \mathrm{~B})$ in register EDH. The $\mathrm{C}, \mathrm{Z}, \mathrm{S}$, and V flags are reset to 0 .

RRC @2CH

Op Code: C1 2C

SBC
 Subtract with Carry

Instruction Format:

SBC dst, src

Operation:

```
dst \leftarrow dst - src - C
```

The value of the source operand, and the value of the C flag, are subtracted from the destination operand. The result is stored in the destination operand. The contents of the source operand do not change. Subtraction is performed by adding the two's complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry (borrow) from the subtraction of low-order operands to be subtracted from the subtraction of high-order operands.

Flags:

When the instruction is executed, the flags are set as follows:
C: 0 if a value is carried from the most significant bit of the result; otherwise, 1 (indicating a borrow).
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
V : 1 if an arithmetic overflow occurs (the operands have opposite signs, and the sign of the result is the same as the sign of the source); otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
$\mathrm{H}: \quad 0$ if if a value is carried from the most significant bit of the low-order four bits of the result; otherwise, 1 (indicating a borrow).
D: 1 .

Example: Working register R3 contains 16H. The C flag is set to 1 . Working register R11 contains 20H. The following statement leaves the value F 5 H in working register R3. The C, S, and D flags are set to 1 , and the Z, V, and H flags are set to 0 .

SBC R3, R11
Op Code: 32 3B
Example: Working register R15 contains 16H. The C flag is not set. Working register R10 contains 20H. Register 20 H contains 11 H . The following statement leaves the value 05 H in working register R15. The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SBC R16, @R10
Op Code: 33 FA
Example: Register 34 H contains 2 EH . The C flag is set. Register 12 H contains 1 BH . The following statement leaves the value 12 H in register 34 H . The D flag is set, and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are cleared.

SBC 34H, 12H
Op Code: 341234
Example: Register 4 BH contains 82 H . The C flag is set. Working register R3 contains 10 H . Register 10 H contains 01 H . The following statement leaves the value 80 H in register 4 BH . The D and S flags are set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{V}$, and H flags are set to 0 .

SBC 4BH, @R3
Op Code: 35 E3 4B
Example: Register 6 CH contains 2AH. The C flag is not set. The following statement leaves the value 27 H in register 6 CH . The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SBC 6CH, \#03H
Op Code: 36 6C 03
Example: Register D4H contains 5FH. Register 5FH contains 4CH. The C flag is set. The following statement leaves the value 49 H in register 5 FH . The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SBC @D4H, \#02H
Op Code: 37 D4 02

Address Space

SCF

Set Carry Flag

Instruction Format:

SRC

$$
\frac{\mathrm{OPC}(\mathrm{Hex})}{\mathrm{DF}}
$$

OPC

Operation:

$$
C \leftarrow 1
$$

The C flag is set to 1 , regardless of its previous value.

Flags:

When the instruction is executed, the flags are set as follows:
C 1 .
Z The value set by the preceding instruction.
$\mathrm{S} \quad$ The value set by the preceding instruction.
V The value set by the preceding instruction.
D The value set by the preceding instruction.
H The value set by the preceding instruction.
Example: The C flag is currently 0 . The following statement sets the Carry flag to 1.
SCF
Op Code: DF

Instruction Format:

SRA dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline \text { D0 } \\ & \text { D1 } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

```
C \leftarrow dst(0)
dst(0) \leftarrow dst(1)
dst(1) \leftarrow dst(2)
dst(2) \leftarrow dst(3)
dst(3) \leftarrow dst(4)
dst(4)}\leftarrow\operatorname{dst(5)
dst(5) \leftarrow dst(6)
dst(6) \leftarrow dst(7)
dst(7) \leftarrow dst(7)
```

An arithmetic right shift by one bit position is performed on the destination operand. Bit 0 replaces the C flag. The value of Bit 7 (the sign bit) is unchanged.Bit 6 becomes the same as the value of bit 7 . The result is a signed divide by two holding the half-bit remainder stored in the Carry (C) flag.

Flags:

When the instruction is executed, the flags are set as follows:
C: $\quad 1$ if the value rotated from the least-significant bit (bit 0) position was 1.
Z : $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V : 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

SRA
 Shift Right Arithmetic

Example:The contents of working register R6 are 31H (00110001B). The following statement leaves the value $98 \mathrm{H}(00011000 \mathrm{~B}$) in working register R 6 . The C flag is set to 1 , and the $Z, \mathrm{~V}$, and S flags are set to 0 .

SRA R6
Op Code: DO E6
Example: Register C6 contains the value DFH. Register DFH contains the value B8H (10111000B). The following statement leaves the value DCH (11011100B) in Register DFH. The C, Z, and V flags are reset to 0 , and the S flag is set to 1 .

SRA @C6
Op Code: D1 C6

Instruction Format:

SRP src

Operation:
$R P \leftarrow \operatorname{src}$

The specified value is loaded into the Register Pointer (RP) Control Register (FDH). Bits 7-4 determine the working register group. Bits 3-0 selects the Memory Page. Addressing non-existent working register groups and memory pages results in undefined behavior.

Table 3-17. Register Pointers, Working Register Groups, and Actual Registers

Register Pointer (FDH) Contents (Bin)	Working Register Group (Hex)	Actual Registers (Hex)
11110000	F	$\mathrm{F0}-\mathrm{FF}$
11100000	E	$\mathrm{E} 0-\mathrm{EF}$
11010000	D	$\mathrm{D} 0-\mathrm{DF}$
11000000	C	$\mathrm{C} 0-\mathrm{CF}$
10110000	B	$\mathrm{~B} 0-\mathrm{BF}$
10100000	A	$\mathrm{~A} 0-\mathrm{AF}$
10010000	9	$90-9 \mathrm{~F}$
10000000	8	$80-8 \mathrm{~F}$
01110000	7	$70-7 \mathrm{~F}$
01100000	6	$60-6 \mathrm{~F}$
01010000	5	$50-5 \mathrm{~F}$
01000000	4	$40-4 \mathrm{~F}$
00110000	3	$30-3 \mathrm{~F}$
00100000	2	$20-2 \mathrm{~F}$
00010000	1	$10-1 \mathrm{~F}$
00000000	0	$00-0 \mathrm{~F}$

SRP

Set Register Pointer

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
Z: The value set by the preceding instruction.
S: \quad The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The following statement $\mathrm{SRP} \div 70$ assigns registers 070 H through 07 FH to be the current working register group, and, therefore, accessable as R0 through R15 in four bit addressing modes. The active memory page is set to page 0 , and all eight-bit addressed register accesses are on page 0 .

SRP ․ 70
Op Code: 31 F0

Instruction Format:

STOP

OPC (Hex)

OPC
6F

Operation:

This instruction turns off the internal system clock (SCLK) and external crystal (XTAL) oscillator, and draws only standby current. The STOP mode is terminated by a RESET or Stop Mode Recovery (SMR) which causes the processor to restart the application program at address 0020 H . The waken up source can be determined by reading the FLAGS register, specifically the SMR and WDT flags (see page 3-5 for more information).

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V : The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: The following statements place the Z8 into STOP mode.

STOP
Op Codes: 6F
NOTE: Unlike the Z 8 , the $\mathrm{Z} 8^{\text {PLUS }}$ does not require a NOP before the STOP instruction.

SUB

Subtract

Instruction Format:

```
SUB dst, src
```

				OPC (Hex)		
				22	r	r
OPC	dst	src		23	r	Ir
				24	R	R
OPC			dst	25	R	IR
OPC			src	26	R	IM
OPC			src	27	IR	IM

Operation:

```
dst \leftarrow dst - src
```

The source operand is subtracted from the destination operand and the result is stored in the destination operand. The contents of the source operand are not changed. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags:

When the instruction is executed, the flags are set as follows:
$\mathrm{C}: \quad 0$ if a value is carried from the most significant bit of the result; otherwise, 1 , indicating a borrow.
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
V: $\quad 1$ if arithmetic overflow occurred (if the operands have opposite sign and the sign of the result has the same as the source); reset otherwise.
S: $\quad 1$ if the result is negative; otherwise, 0 .
H : $\quad 0$ if there is a carry from the most significant bit of the low-order four bits of the result; otherwise, 1 , indicating a borrow.
D: 1 .

SUB
 Subtract

Example: Working register R3 contains 16H. Working register R11 contains 20 H . The following statement leaves the value F6H in working register R3. The C, S, and D flags are set to 1 , and the Z , V , and H flags are set to 0 .

SUB R3, R11
Op Code: 22 3B
Example: Working register R15 contains 16H. Working register R10 contains 20H. Register 20H contains 11 H . The following statement leaves the value 05 H in working register R15. The D flag is set to 1 , and the C, Z, S, V, and H flags are set to 0 .

SUB R16, @R10
Op Code: 23 FA
Example: Register 34H contains 2EH. Register 12H contains 1BH. The following statement leaves the value 13 H in register 34 H . The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SUB 34H, 12H
Op Code: 241234
Example: Register 4BH contains 82 H . Working register R3 contains 10 H . Register 10 H contains 01 H . The following statement leaves the value 81 H in register 4 BH . The D and S flags are set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{V}$, and H flags are set to 0 .

SUB 4BH, @R3
Op Code: 25 E3 4B
Example: Register 6 CH contains 2 AH . The following statement leaves the value 27 H in register 6 CH . The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SUB 6CH, \#03H
Op Code: 26 6C 03
Example: Register D4H contains 5FH. Register 5FH contains 4CH. The following statement leaves the value 4 AH in register 5 FH . The D flag is set to 1 , and the $\mathrm{C}, \mathrm{Z}, \mathrm{S}, \mathrm{V}$, and H flags are set to 0 .

SUB @D4H, \#02H
Op Code: 17 D4 02

Address Space
ZiLOG

SWAP

Swap Nibbles

Instruction Format:

SWAP dst

		OPC (Hex)	Address Mode dst
OPC	dst	$\begin{aligned} & \hline \text { F0 } \\ & \text { F1 } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$

Operation:

dst(7-4) $\leftrightarrow \operatorname{dst}(3-0)$
The contents of the lower four bits and upper four bits of the destination operand are swapped.

Flags:

When the instruction is executed, the flags are set as follows:

C : The value set by the preceding instruction.
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
$\mathrm{S}: \quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: Register BCH contains B3H (10110011B). The following statement leaves the value 3BH (00111011B) in register BCH. The Z and S flags are set to 0 .

```
SWAP B3H
Op Code: FO B3
```

Example: Working register R5 contains BCH and register BCH contains B3H (10110011B). The following statement leaves the value $3 \mathrm{BH}(00111011 \mathrm{~B})$ in register BCH . The Z and S flags are set to 0 .

ZiLOG	Z8 PLus User's Manual Address Space
TCM	
	Test Complement Under Mask

Instruction Format:

Operation:

(NOT dst) AND src
This instruction tests selected bits in the destination operand for a logical 1 value. The bits to be tested are specified by setting a 1 bit in the corresponding bit position in the source operand (the mask). The TCM instruction complements the destination operand, and then perforoms a logingal AND operation using ANDs with the mask (source operand). The Zero (Z) flag can then be read to check the result. If the Z flag is set, then the tested bits were 1 . When the TCM operation is complete, the destination and source operands still contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows::
C: \quad The value set by the preceding instruction.
$\mathrm{Z}: \quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Working register R3 contains 45H (01000101B). Working register R7 contains the value 01H (00000001 B) (bit 0 is being tested if it is 1). The following statement sets the Z flag indicating bit 0 in the destination operand is 1 . The V and S flags are set to 0 .

TCM R3, R7
Op Code: 6237

TCM
 Test Complement Under Mask

Example: Working register R14 contains the value F3H (11110011B). Working register R5 contains CBH. Register CBH contains 88 H (10001000 B) (bit 7 and bit 3 are tested if they are 1). The following statement resets the Z flag to 0 , because bit 3 in the destination operand is not a 1 . The V and S flags are also set to 0 .

TCM R14, @R5
Op Code: 63 E5
Example: Register D4H contains the value $04 \mathrm{H}(000001000 \mathrm{~B})$. Working register R0 contains the value $80 \mathrm{H}(1000000 \mathrm{~B})$ (bit 7 istested if it is 1). The following statement resets the Z flag to 0 , because bit 7 in the destination operand is not a 1 . The S flag is set to 1 , and the V flag is set to 0 .

TCM D4H, R0
Op Code: 64 E0 D4
Example: Register DFH contains the value FFH (11111111B). Register 07H contains the value 1FH. Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit 0 are tested if they are 1), The following statement sets the z flag to 1 indicating the tested bits in the destination operand are 1 . The S and V flags are set to 0 .

TCM DFH, @07H
Op Code: 6507 DF
Example: Working register R13 contains the value F2H (11110010B). The following statement tests bit 1 of the destination operand for 1 . The z flag is set to 1 indicating bit 1 in the destination operand was 1 . The S and V flags are set to 0 .

TCM R13, \#02H
Op Code: 66 ED, 02
Example: Register 5DH contains A0H. Register A0H contains OFH (00001111B). The statement tests bit 4 of the Register AOH for 1 . The Z flag is reset to 0 indicating bit 1 in the destination operand was not 1 . The S and V flags are set to 0 .

TCM @5D, \#10H
Op Code: 67 5D 10

ZiLOG	Z8 PLus User's Manual Address Space
TM	
Test Under Mask	

Instruction Format:

TM dst, src

Operation: dst AND src
This instruction tests selected bits in the destination operand for a logical 0 value. The bits to be tested are specified by setting a 1 bit in the corresponding bit position in the source operand (the mask). The TM instruction AnDs the destination operand with the mask (the source operand). The Zero (Z) flag can then be read to check the result. If the Z flag is set, then the tested bits were 0 . When the TM operation is complete, the destination and source operands still contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
$\mathrm{S}: \quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Working register R3 contains 45H (01000101B. Working register R7 contains the value 02H (00000010 B) (bit 1 is tested if it is 0). The following statement sets the Z flag to 1 indicating bit 1 in the destination operand is 0 . The V and S flags are set to 0 .

```
TM R3, R7
Op Code: 72 37
```

ZiLOG

TM
 Test Under Mask

Example: Working register R14 contains the value F3H (11110011B). Working register R5 contains CBH. Register CBH contains 88H (10001000B) (bit 7 a bit 3 are tested if they are 0). The following statement resets the Z flag to 0 , because bit 7 in the destination operand is not a 0 . The S flag is set to 1 , and the V flag is set to 0 .

```
TM R14, @R5
Op Code: 73 E5
```

Example: Register D4H contains the value 08H (00001000 B). Working register R0 contains the value 04 H (00000100 B) (bit 2 is tested if it is 0). The statement sets the Z flag to 1 , because bit 2 in the destination operand is a 0 . The S and V flags are set to 0 .

TM D4H, R0
Op Code: 74 E0 D4
Example: Register DFH contains the value 00H (00000000B). Register 07H contains the value 1 FH . Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit 0 are tested if they are 0). The following statement sets the z flag to 1 , indicating the tested bits in the destination operand are 0 . The S is set to 1 , and the V flag is set to 0 .

TM DFH, @07H
Op Code: 7507 DF
Example: Working register R13 contains the value F1H (11110001B). The following statement tests bit 1 of the destination operand for 0 . The z flag is set to 1 , indicating bit 1 in the destination operand was 0 . The S and V flags are set to 0 .

TM R13, \#02H
Op Code: 76 ED, 02
Example: Register 5DH contains A0H. Register A0H contains OFH (00001111 B). The following statement tests bit 4 of the register A0H for 0 . The Z flag is set to 1 , indicating bit 4 in the destination operand was 0 . The S and V flags are set to 0 .

TM @5D, \#10H
Op Code: 77 5D 10

WDT
 Watch-Dog Timer

Instruction Format:

WDT

OPC (Hex)

OPC
5F

Operation:

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the device if it reaches its terminal count. Each execution of the WDT instruction refreshes the timer and prevents the WDT from timing out.

Flags:

When the instruction is executed, the flags are set as follows:

C: The value set by the preceding instruction.
$\mathrm{Z}: \quad$ The value set by the preceding instruction.
S: The value set by the preceding instruction.
V: The value set by the preceding instruction.
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.
Example: The WDT is enabled. The following statement refreshes the Watch-Dog Timer.

```
WDT
Op Code:5F
```


XOR

Logical Exclusive OR

Instruction Format:

```
XOR dst, src
```

OPC				B2	r	r	
	dst	src		B3	r	Ir	
OPC	src		dst	B4	R	R	
			B5	R	IR		
OPC	dst			src	B6	R	IM
			B7		IR	IM	

Operation:

```
dst \leftarrow dst XOR src
```

The source operand performs a logical EXCLUSIVE ORed operation, which stores a 1 in the destination operand whenever the corresponding bits in the two operands are different. The destination operand is set to 1 ; otherwise, a 0 is stored. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:
C: The value set by the preceding instruction.
Z: $\quad 1$ if the result is 0 ; otherwise, 0 .
S: $\quad 1$ if bit 7 of the result is 1 ; otherwise, 0 .
V: 0 .
D: The value set by the preceding instruction.
H: The value set by the preceding instruction.

Example: Working register R1 contains 38H (00111000B). Working register R14 contains 8DH (10001101B). The following statement leaves the value B5H (10110101B) in working register R1. The Z, and V flags are set to 0 , and the S flag is set to 1 .

XOR R1, R14
Op Code: B2 1E
Example: Working register R4 contains F9H (11111001B). Working register R13 contains 7BH. Register 7B contains 6AH (01101010B). The following statement leaves the value 93H (10010011B) in working register $R 4$. The S flag is set to 1 , and the Z and V flags are set to 0 .

XOR R4, @R13
Op Code: B3 4D
Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH (00001010 B). The following statement leaves the value FFH (11111111B) in register 3AH. The S flag is set to 1 , and the C and V flags are set to 0 .

XOR 3AH, 42H
Op Code: B4 42 3A
Example: Working register R5 contains F0H (11110000B). Register 45H contains 3AH. Register 3A contains 7F (01111111B). The statement leaves the value 8FH (10001111B) in working register R5. The S flag is set to 1 , and the C and V flags are set to 0 .

XOR R5, @45H
Op Code: B5 45 E5
Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value 07H (00000111 B) in register 7AH. The Z, V, and S flags are set to 0 .

XOR 7AH, \#FOH
Op Code: B6 7A F0
Example: Working register R3 contains the value 3EH. Register 3EH contains the value 6CH (01101100B). The following statement leaves the value 69 H (01101001 B) in register 3 EH . The Z, V, and S flags are set to 0 .

```
XOR @R3, #05H
Op Code: B7 E3 05
```


\qquad

INTRODUCTION

The $\mathrm{Z} 8^{\text {PLuS }}$ core allows 15 different interrupts from a variety of sources:

- external inputs
- on-chip peripherals
- software

Interrupts can be masked by using the Interrupt Mask Register. All interrupts can be globally disabled by setting the master Interrupt Enable, bit 7 in the Interrupt Mask Register, to 0, with a Disable Interrupt (DI) instruction. Interrupts are globally enabled by setting bit 7 to 1 with an Enable Interrupt (EI) instruction.

There are four interrupt control registers: the Interrupt Request Registers (IREQ and IREQ2) and the Interrupt Mask registers (IMASK and IMASK2). Figure 4-1 shows addresses and identifiers for the interrupt control registers. Figure 4-2 is a block diagram showing the Interrupt Mask and Interrupt Priority logic.

Register	HEX	Identifier
Interrupt Mask	0FBH	IMASK
Interrupt Request	0FAH	IREQ
Interrupt Mask 2	0F9H	IMASK2
Interrupt Request 2	0F8H	IREQ2

Figure 4-1. Interrupt Control Register Addresses and Identifiers

The $Z_{8}{ }^{\text {PLus }}$ MCU family supports both vectored and polled interrupt handling. Details on vectored and polled interrupts can be found later in this chapter.

Figure 4-2. Interrupt Block Diagram
NOTE: See the selected $Z 8^{\text {PLuS }}$ MCU's product specification for the exact interrupt sources supported.

INTERRUPT SOURCES

Table 4-1 presents the interrupt types, sources, and vectors available in the Z8E001. Other processors from the $\mathrm{Z} 8^{\text {PLus }}$ family may define the interrupts differently.

Table 4-1. Z8E001 Interrupt Types, Sources, and Vectors

Name	Sources	Vector Location	Comments	Fixed Priority
IREQ $_{0}$	Timer0 Time-out	2,3	Internal	1 (Highest)
IREQ $_{1}$	PB4 High-to-Low Transition	4,5	External (PB4), Edge Triggered	2
IREQ $_{2}$	Timer1 Time-out	6,7	Internal	3
IREQ $_{3}$	PB2 High-to-Low Transition	8,9	External (PB2), Edge Triggered	4
IREQ $_{4}$	PB4 Low-to-High Transition	A,B	External (PB4), Edge Triggered	5
IREQ $_{5}$	Timer2 Time-out	C,D	Internal	6 (Lowest)
IREQ $_{6}-$	Reserved		Reserved for future expansion	
IREQ $_{15}$				

External Interrupt Sources

External sources can be generated by a transition on the corresponding Port pin. The interrupt may detect a rising edge, a falling edge, or both.

NOTES:

1. The interrupt sources and trigger conditions are device dependent. See the device product specification to determine available sources (internal and external), triggering edge options, and exact programming details.
2. Although interrupts are edge triggered, minimum interrupt request Low and High times must be observed for proper operation. See the device product specification for exact timing requirements on external interrupt requests $\left(\mathrm{T}_{\mathrm{W}} \mathrm{IL}, \mathrm{T}_{\mathrm{W}} \mathrm{IH}\right)$.

Internal Interrupt Sources

Internal interrupt sources and trigger conditions are device dependent. On-chip peripherals may set interrupt under various conditions. Some peripherals always set their corresponding IREQ bit while others must be specifically configured to do so.

See the device product specification to determine available sources, triggering edge options, and exact programming details. For more details on the interrupt sources, refer to the chapters describing the timers, comparators, I/O ports, and other peripherals.

INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING

The $Z 8^{\text {Plus }}$ core responds to interrupts as it retires each instruction. If an unmasked interrupt is detected as an instruction is being retired, the $\mathrm{Z} 8{ }^{\text {PLUS }}$ core does not execute an instruction during the next instruction cycle. The $\mathrm{Z} 8^{\text {PLUS }} \mathrm{MCU}$ instead selects the highest priority outstanding interrupt to be serviced. The program counter and flags register are pushed to the stack during the next instruction cycle. The appropriate IREQ bit is cleared, the master enable is cleared and the MCU fetches the interrupt vector from program memory. It then jumps to the user's interrupt routine during the following cycle (See Figure 4-3).

Figure 4-3. Interrupt Service Sequence

NOTES:

1. There are no outstanding, unmasked interrupts.
2. Interrupt source sets an IREQ bit during this interval. This bit is highest priority, has an unmasked IREQ, and is bit-sampled.
3. PC and flags are pushed, IREQ bit cleared, IMASK (7) cleared, and vector fetched.
4. JUMP to interrupt vector.
5. This portion is the first instruction of user's interrupt service routine.

Interrupt Mask Register (IMASK) Initialization

The IMASK register individually or globally enables or disables the interrupts (see Figure 4-4). When bits 0 through bit 6 are set to 1 , the corresponding interrupt requests are enabled. The IMASK2 register, bits 0 through 7, enable and disable IRQ7 through IRQ14, respectively. Bit 7 is the master enable bit and must be set before any of the individual interrupt requests can be recognized. Resetting bit 7 disables all the interrupt requests. Bit 7 is set and reset by the EI and DI instructions. It is automatically set to 0 during an interrupt service routine and set to 1 following the execution of an Interrupt Return (IRET) instruction. The IMASK registers are reset to 00 H , disabling all interrupts.

NOTE:

1. It is not good programming practice to directly aqssign a value to the master enable bit. A value change should always be accomplished by issuing the EI and DI instructions.
2. Care should be taken not to set or clear IMASK bits while the master enable is set.

Figure 4-4. Interrupt Mask Register
Interrupt Mask Register-IMASK (FBH)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	0	0	0	0	0	0	0	0
$\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate $\mathrm{U}=$ Undefined/Undetermined								

Bit Position	R/W	Value
7	0	Description
1	Disables Interrupts	
Enables Interrupts		
6	0	Disables IRQ5
	1	Enables IRQ5
5	0	Disables IRQ5
	1	Enables IRQ5
4	0	Disables IRQ4
	1	Enables IRQ4
3	0	Disables IRQ3
	1	Enables IRQ3
2	0	Disables IRQ2
	1	Enables IRQ2
1	0	Disables IRQ1
	1	Enables IRQ1
0	0	Disables IRQ0
	1	Enables IRQ0

Figure 4-5. Interrupt Mask 2 Register
Interrupt Mask 2 Register-IMASK2 (F9H)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	0	0	0	0	0	0	0	0
R = Read W Write $X=$ Indeterminate U $=$ Undefined/Undetermined								

Bit Position	R/W	Value	Description
7	R/W	0 1	Disables IRQ14 Enables IRQ14
6	R/W	0 1	Disables IRQ13 Enables IRQ13
5	R/W	0 1	Disables IRQ12 Enables IRQ12
4	R/W	0 1	Disables IRQ11 Enables IRQ11
3	R/W	0 1	Disables IRQ10 Enables IRQ10
2	R/W	0 1	Disables IRQ9 Enables IRQ9
1	R/W	0 1	Disables IRQ8 Enables IRQ8
0	R/W	0	Disables IRQ7
		1	Enables IRQ7

Interrupt Request (IREQ) Register Initialization

IREQ (see Figure 4-6) is a register that stores the interrupt requests for both vectored and polled interrupts. When an interrupt is issued, the corresponding bit position in the register is set to 1 . Bit 0 to bit 5 are assigned to interrupt requests IREQ0 to IREQ5, respectively.

Whenever RESET is executed, the IREQ resister is set to 00 H .

Figure 4-6. Interrupt Request Register.
Interrupt Request Register-IREQ (FAH)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	0	0	0	0	0	0	0	0
R $=$ Read W $=$ Write $X=$ Indeterminate U $=$ Undefined/Undetermined								

Bit Position	R/W	Value	Description
7	R/W	0	Reserved,must be 0
6	R/W	0 1	IRQ6 reset IRQ6 set
5	R/W	0 1	IRQ5 reset IRQ5 set
4	R/W	0 1	IRQ4 reset IRQ4 set
3	R/W	0	IRQ3 reset
1	IRQ3 set		
2	R/W	0 1	IRQ2 reset IRQ2 set
1	R/W	0	IRQ1 reset
		1	IRQ1 set
0	R/W	0	IRQ0 reset
1	IRQ0 set		

Figure 4-7. Interrupt Request Register 2
Interrupt Request Register 2-IREQ2 (F8H)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	0	0	0	0	0	0	0	0
R = Read W Write X Indeterminate U = Undefined/Undetermined								

Bit Position	R/W	Value	Description
7	R/W	0	IRQ14 reset IRQ14 set
6	R/W	0	IRQ13 reset IRQ13 set
5	R/W	0 1	IRQ12 reset IRQ12 set
4	R/W	0 1	IRQ11 reset IRQ11 set
3	R/W	0	IRQ10 reset
		1	IRQ10 set
2	R/W	0	IRQ9 reset
		1	IRQ9 set
1	R/W	0 1	IRQ8 reset IRQ8 set
0	R/W	0	IRQ7 reset
		1	IRQ7 set

IREQ SOFTWARE INTERRUPT GENERATION

IREQ can be used to generate software interrupts by specifying IREQ as the destination of any instruction referencing the $\mathrm{Z} 8^{\text {PLuS }}$ Standard Register File. These software interrupts (SWI) are controlled in the same manner as hardware generated requests. In other words, the IMASK controls the enabling of each SWI.

To generate a SWI, the request bit in IREQ is set by the following statement:

```
OR IREQ,#NUMBER
```

The immediate data variable, NUMBER, has a 1 in the bit position corresponding to the required level of SWI. For example, an SWI must be issued when an IREQ5 occurs. Bit 5 of NUMBER must have a value of 1 .

```
OR IREQ, #00100000B
```

If the interrupt system is globally enabled, IREQ5 is enabled, and there are no higher priority requests pending, control is transferred to the service routine pointed to by the IREQ5 vector.

NOTE: Note that software may modify the IREQ register at any time. Care should be taken when using any instruction that modifies the IREQ register while interrupt sources are active. The software writeback always takes precedence over the hardware. If a software writeback takes place on the same cycle as an interrupt source tries to set an IREQ bit, the new interrupt is lost.

VECTORED PROCESSING

Each $\mathrm{Z8}^{\text {PLus }}$ interrupt level has its own vector. When an interrupt occurs, control passes to the service routine pointed to by the interrupt's vector location in program memory. The sequence of events for vectored interrupts is as follows:

- PUSH the PC Low Byte on the Stack
- PUSH the PC High Byte on the Stack
- PUSH the FLAGS on the Stack
- Disable Global Interrupts (bit 7 of IMASK)
- Fetch the High Byte of the Vector
- Fetch the Low Byte of the Vector
- Branch to the Service Routine specified by Vector

Figure 4-8 and Figure 4-9 show vectored interrupt operation.

Stack Pointer and Stack Before an Interrupt

Stack Pointer and Stack After an Interrupt

Figure 4-8. Stacks Before and After Interrupt

Figure 4-9. Interrupt Vector Table Location

Nesting of Vectored Interrupts

Nesting vectored interrupts allows higher priority requests to interrupt a lower priority request. To initiate vectored interrupt nesting, perform the following steps during the interrupt service routine:

- PUSH the old IMASK on the stack.
- Load IMASK with a new mask to disable lower priority interrupts.
- Execute an EI instruction.
- Proceed with interrupt processing.
- Execute a DI instruction after processing is complete.
- Restore the IMASK to its original value by POPing the previous mask from the stack.
- Execute IRET.

Depending on the application, some simplification of the above procedure may be possible.

POLLED PROCESSING

Polled interrupt processing is supported by masking off the IREQ to be polled. This process is accomplished by setting the corresponding bits in the IMASK to 0 .

To initiate polled processing, check the appropriate bits in the IREQ using the Test Under Mask (TM) instruction. If the bit is set to 1 , call or branch to the service routine. The service routine services the request, resets its Request Bit in the IREQ, and branches or returns back to the main program. An example of a polling routine is as follows:

```
TM IREQ,#MASKA;Test for request
JR Z, NEXT;If no request go to NEXT
CALL SERVICE;If request is there,then
;service it
NEXT:
•
.
SERVICE:;Process Request
.
.
-
AND IREQ, #MASKB ; Clear Request Bit
RET;Return to next
```

In this example, if IREQ2 is being polled, MASKA is 00000100 B and MASKB is 11111011 B .

RESET CONDITIONS

The IMASK and IREQ registers initialize to 00H on RESET.

\qquad

BULLETIN BOARD INFORMATION

The ZiLOG Bulletin Board Service (ZBBS) currently provides basic information on ZiLOG products and includes a ROM CODE upload area. In addition, the ZBBS provides valuable information on items of interest, such as ZiLOG specialty software and documentation.

How to Access the ZBBS

The ZBBS can be reached by dialing 1-408-558-8890. The ZBBS supports speeds up to 28.8 K Baud with connections $8-\mathrm{N}-1$ (8 bits, No parity, 1 stop bit). We recommend that you use an ANSI/BBS terminal emulation setup.

To preview information or download files, follow the on-screen instructions.
The latest production released version of the Z8 GUI software can be downloaded from this site.

ZiLOG ON THE INTERNET

ZiLOG has a Home Page on the Internet. The Home Page address is:
http://www.zilog.com
The ZiLOG Home Page includes valuable information about hardware and software development tools. The latest production released version of the Z8 GUI software can be downloaded from this site.

\qquad

If you experience any problems while operating this product, or if you note any inaccuracies while reading the User's Manual, please copy this form, fill it out, then mail or fax it to ZiLOG (see "Return Information"). We also welcome your suggestions!

Customer Information

| Name | Country |
| :--- | :--- | :--- |
| Company | Telephone |
| Address | Fax Number |
| City/State/ZIP | E-Mail Address |

Product Information

Serial \# or Board Fab \#/Rev. \#
Software Version
Manual Number
Host Computer Description/Type

Return Information
ZiLOG, Inc.
System Test/Customer Support
910 E. Hamilton Ave., Suite 110, MS 4-3
Campbell, CA 95008
Fax Number: (408) 558-8536
Email: tools@zilog.com

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are reporting a specific problem, include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.

\qquad

A

add (ADD) 3-23
add with carry (ADC) 3-20
addressing
12-bit 2-1
16-bit 2-1
4-bit address 2-1
8-bit address 2-1
direct 2-7
immediate data 2-9
indexed 2-5
indirect register 2-3
modes 2-1
register 2-2
relative 2-8
arithmetic instructions
add (ADD) 3-2, 3-23
add with carry (ADC) 3-2, 3-20
compare (CP) 3-2, 3-32
decimal adjust (DA) 3-2, 3-34
decrement (DEC) 3-2, 3-37
decrement word (DECW) 3-2, 3-38
increment (INC) 3-2, 3-44
increment word (INCW) 3-2, 3-46
subtract (SUB) 3-2, 3-82
subtract with carry (SBC) 3-2, 3-74
assembly language syntax 3-12

B

binary encoding 3-10 bit manipulation instructions
bit clear (AND) 3-3
bit complement (XOR) 3-3

Index

bit set (OR) 3-3
test complement under mask (TCM) 3-3, 3-85
test under mask (TM) 3-3, 3-87
block diagram, interrupt 4-2

C

call procedure (CALL) 3-27
carry flag (C) 3-5
clear (CLR) 3-30
compare (CP) 3-32
complement (COM) 3-31
complement carry flag (CCF) 3-29
condition codes (cc) 3-7, 3-8
control
core registers 1-3
peripheral registers 1-10
registers 1-10
CPU control instructions 3-4
complement carry flag (CCF) 3-4, 3-29
disable interrupts (DI) 3-4, 3-39
enable interrupts (EI) 3-4
halt (HALT) 3-4, 3-43
no operation (NOP) 3-4, 3-59
reset carry flag (RCF) 3-4, 3-64
set carry flag (SCF) 3-4
set carry flag(SCF) 3-76
set register pointer (SRP) 3-4, 3-79
stop (STOP) 3-4, 3-81
watch-dog timer (WDT) 3-4, 3-89

D

decimal adjust
DA instruction 3-2, 3-34
flag 3-6
decrement
and jump if non-zero (DJNZ) 3-40
DEC instruction 3-37
word (DECW) 3-38
definitions
flag 3-7
flag settings 3-8
destination operand (dst) 3-1
direct addressing mode (DA) 2-7
disable interrupts (DI) 3-39

E

enable interrupts (EI) 3-42
encoding notation and binary 3-10
external interrupt sources 4-3

F

flag
carry (C) 3-5
decimal adjust 3-6
definitions 3-7
half-carry 3-6
overflow 3-6
processor 3-5
register 3-5
settings definitions 3-8
sign 3-6
stop mode recovery 3-7
watch-dog timer 3-7
zero 3-5

G

general purpose registers 1-5

H

half-carry flag (H) 3-6
halt (HALT) 3-43
high nibble 1-6
I
immediate data addressing (IM) 2-9
increment (INC) 3-44
increment word (INCW) 3-46
indexed addressing (X) 2-5
indirect register addressing (IR) 2-3
instructions
arithmetic 3-2
bit manipulation 3-3
block transfer 3-3
CPU control 3-4
load 3-2
logical 3-2
program control 3-3
rotate and shift 3-4
summary 3-12
internal interrupt sources 4-4
interrupt
block diagram 4-2
control registers 4-1
external sources 4-3
internal sources 4-4
mask register initialization 4-5
mask registers (IMASK) 4-1
polled 4-2
request register (IREQ) 4-1
request register initialization 4-7
request register logic and timing 4-4
return (IRET) 3-47
sources 4-3
vectored 4-2
jump (JP) 3-48
jump relative (JR) 3-50

L

load 3-51
constant (LDC) 3-55
constant auto increment (LDCI) 3-3, 3-57
load instructions
clear (CLR) 3-2, 3-30
load (LD) 3-2, 3-51
load constant (LDC) 3-2, 3-55
pop (POP) 3-2, 3-62
push (PUSH) 3-2, 3-63
logical
AND (AND) 3-25
exclusive OR (XOR) 3-90
logical instructions 3-2
complement 3-2
complement (COM) 3-31
logical AND (AND) 3-2
logical and (AND) 3-25
logical exclusive OR (XOR) 3-2, 3-90
logical OR (OR) 3-2, 3-60
lower nibble values 3-17

M

memory
map 1-12
program 1-11

N

nibble
high 1-6
lower values 3-17
no operation (NOP) 3-59
notation and binary encoding 3-10
notational shorthand 3-10

0

opcode map 3-18
operand
destination 3-1
dst 3-1
source 3-1
src 3-1
overflow flag 3-6

P

peripheral registers 1-10
polled interrupt 4-2
pop (POP) 3-62
processor flags 3-5
program control inctructions
IRET instruction 3-47
program control instructions
call procedure (CALL) 3-3, 3-27
decrement and jump if non-zero (DJNZ) 3-40
decrement and jump non-zero (DJNZ) 3-3
interrupt return (IRET) 3-3
jump (JP) 3-3, 3-48
jump relative (JR) 3-3, 3-50
return (RET) 3-3, 3-65
program memory 1-11
program memory map 1-12

R

register
addressing (R) 1-5, 2-2
control 1-10
control and peripheral 1-10
core control 1-3
file organization 1-4
file space 1-1
flag 3-5
general purpose 1-5
peripheral 1-10
pointer 1-6
stack pointer 1-13
working groups 1-6
relative addressing (RA) 2-8
reset carry flag (RCF) 3-64
return (RET) 3-65
rotate and shift instructions 3-4
rotate left (RL) 3-4, 3-66
rotate left through carry (RLC) 3-4, 3-68
rotate right (RR) 3-4, 3-70
rotate right through carry (RRC) 3-4, 3-72
shift right arithmetic (SRA) 3-4, 3-77
swap nibbles (SWAP) 3-4, 3-84

S

set
set carry flag (SCF) 3-76
set register pointer (SRP) 3-79
shift right arithmetic (SRA) 3-77
shorthand, notational 3-10
sign flag (S) 3-6
source operand (src) 3-1
stack pointer register (SP) 1-13
stop (STOP) 3-81
stop mode recovery flag (SMR) 3-7
subtract (SUB) 3-82
subtract with carry (SBC) 3-74
swap nibbles (SWAP) 3-84
syntax assembly language 3-12

T

test complement under mask (TCM) 3-85
test under mask (TM) 3-87
timer, watch-dog (WDT) 1-8, 3-89

V

vectored interrupt 4-2
W
watch-dog timer 1-8
watch-dog timer (WDT) 3-89
watch-dog timer flag (WDT) 3-7
working register groups 1-6

Z

zero flag (Z) 3-5

