On Calabi-Bernstein results for maximal surfaces in Lorentzian products

Alma L. Albujer, Luis J. Alías

University of Murcia

November, 2005

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Complete maximal surfaces Entire maximal graphs References

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

• $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ Riemannian 3-manifold.

- \mathbb{R}^2 Euclidean plane $(\mathbb{R}^2, dx^2 + dy^2)$
- \mathbb{R} Euclidean line (\mathbb{R} , dt^2)

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

• $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ Riemannian 3-manifold.

- \mathbb{R}^2 Euclidean plane $(\mathbb{R}^2, dx^2 + dy^2)$
- \mathbb{R} Euclidean line (\mathbb{R} , dt^2)

 $(\mathbb{R}^3, dx^2 + dy^2 + dt^2)$

Notation and basic tools Complete maximal surfaces Entire maximal graphs References

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Calabi-Bernstein's theorem (1970)

The only complete maximal surfaces in the Lorentz-Minkowski space \mathbb{L}^3 are the spacelike planes.

Complete maximal surfaces Entire maximal graphs References

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Calabi-Bernstein's theorem (1970)

The only complete maximal surfaces in the Lorentz-Minkowski space \mathbb{L}^3 are the spacelike planes.

Notation and basic tools Complete maximal surfaces Entire maximal graphs References

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Calabi-Bernstein's theorem (1970)

The only complete maximal surfaces in the Lorentz-Minkowski space \mathbb{L}^3 are the spacelike planes.

- $\mathbb{L}^3 = \mathbb{R}^2 \times \mathbb{R}$ Lorentzian 3-manifold.
 - \mathbb{R}^2 Euclidean plane $(\mathbb{R}^2, dx^2 + dy^2)$
 - \mathbb{R} Euclidean line (\mathbb{R} , dt^2)

Notation and basic tools Complete maximal surfaces Entire maximal graphs References

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Calabi-Bernstein's theorem (1970)

The only complete maximal surfaces in the Lorentz-Minkowski space \mathbb{L}^3 are the spacelike planes.

- $\mathbb{L}^3 = \mathbb{R}^2 \times \mathbb{R}$ Lorentzian 3-manifold.
 - \mathbb{R}^2 Euclidean plane $(\mathbb{R}^2, dx^2 + dy^2)$
 - \mathbb{R} Euclidean line (\mathbb{R}, dt^2)

 $(\mathbb{L}^3, dx^2 + dy^2 - dt^2)$

Introduction

Bernstein's theorem (1915-1917)

The only entire minimal graphs in the Euclidean space \mathbb{R}^3 are the planes.

Calabi-Bernstein's theorem (1970)

The only c are the spa

$$\frac{(\mathbb{R}^3, dx^2 + dy^2 + dt^2)}{(\mathbb{L}^3, dx^2 + dy^2 - dt^2)}$$

Ima L. Albujer, Luis J. Alías Calabi-Bernstein results for maximal surfaces into
$$M \times \mathbb{R}$$

pace \mathbb{L}^3

★ 문 ► ★ 문 ► .

Our ambient space

æ

Our ambient space

• Let (M^2, g) be a connected Riemannian surface.

э

Our ambient space

- Let (M^2, g) be a connected Riemannian surface.
- $\bullet\,$ Consider the product manifold $M\times\mathbb{R}$ endowed with the metric

 $\langle \;,\,
angle=\pi^*_{
m M}(g)+arepsilon\pi^*_{
m R}(dt^2),\quadarepsilon=\pm 1$

3

Our ambient space

- Let (M^2, g) be a connected Riemannian surface.
- $\bullet\,$ Consider the product manifold $M\times\mathbb{R}$ endowed with the metric

 $\langle \;,\,
angle=\pi^*_{
m M}(g)+arepsilon\pi^*_{
m R}(dt^2),\quadarepsilon=\pm 1$

$$arepsilon = egin{array}{cc} 1 & \leadsto & \left\{ egin{array}{cc} \operatorname{Riemannian product.} & \ (\mathrm{M} imes \mathbb{R}, \pi^*_\mathrm{M}(g) + \pi^*_\mathbb{R}(dt^2)) \Rightarrow \mathrm{M} imes_+ \mathbb{R} & \end{array}
ight.$$

3

Our ambient space

- Let (M^2, g) be a connected Riemannian surface.
- $\bullet\,$ Consider the product manifold $M\times\mathbb{R}$ endowed with the metric

 $\langle \;,\,
angle=\pi^*_{
m M}(g)+arepsilon\pi^*_{
m R}(dt^2),\quadarepsilon=\pm 1$

$$\begin{split} \varepsilon &= 1 \quad \rightsquigarrow \left\{ \begin{array}{ll} \text{Riemannian product.} \\ \left(\mathbf{M} \times \mathbb{R}, \pi_{\mathbf{M}}^{*}(g) + \pi_{\mathbb{R}}^{*}(dt^{2}) \right) \Rightarrow \mathbf{M} \times_{+} \mathbb{R} \\ \varepsilon &= -1 \quad \rightsquigarrow \left\{ \begin{array}{l} \text{Lorentzian product. Our ambient space.} \\ \left(\mathbf{M} \times \mathbb{R}, \pi_{\mathbf{M}}^{*}(g) - \pi_{\mathbb{R}}^{*}(dt^{2}) \right) \Rightarrow \mathbf{M} \times_{-} \mathbb{R} \end{array} \right. \end{split}$$

Notation and basic tools

• Let $f: \Sigma \to M \times_{\mathbb{Z}} \mathbb{R}$ be a spacelike surface.

э

Notation and basic tools

- Let $f: \Sigma \to M \times_{\mathbb{Z}} \mathbb{R}$ be a spacelike surface.
- $T = \tilde{\partial}_t \in \mathcal{X}(M \times \mathbb{R})$ is a globally defined, unitary timelike vector field \rightsquigarrow

3

Notation and basic tools

- Let $f: \Sigma \to M \times_{\mathbb{Z}} \mathbb{R}$ be a spacelike surface.
- $T = \tilde{\partial}_t \in \mathcal{X}(M \times \mathbb{R})$ is a globally defined, unitary timelike vector field \rightsquigarrow
 - $M \times R$ is time-orientable.
 - Exists $N\in \mathcal{X}^{\perp}(\Sigma),$ the only globally defined, unitary timelike vector field normal to Σ such that

$$\langle T, N \rangle \leq -1.$$

Notation and basic tools

- Let $f: \Sigma \to M \times_{\mathbb{Z}} \mathbb{R}$ be a spacelike surface.
- $T = \tilde{\partial}_t \in \mathcal{X}(M \times \mathbb{R})$ is a globally defined, unitary timelike vector field \rightsquigarrow
 - $\bullet \ \mathrm{M}\times_{_}\mathbb{R} \text{ is time-orientable}.$
 - Exists $N \in \mathcal{X}^{\perp}(\Sigma)$, the only globally defined, unitary timelike vector field normal to Σ such that

$$\langle T, N \rangle \leq -1.$$

• The height function of the surface Σ , $h: \Sigma \to \mathbb{R}$ is defined as

 $h=\pi_{\mathbb{R}}\circ f.$

Notation and basic tools

- Let $f: \Sigma \to M \times_{\mathbb{Z}} \mathbb{R}$ be a spacelike surface.
- $T = \tilde{\partial}_t \in \mathcal{X}(M \times \mathbb{R})$ is a globally defined, unitary timelike vector field \rightsquigarrow
 - $\bullet \ \mathrm{M}\times_{_}\mathbb{R} \text{ is time-orientable}.$
 - Exists $N \in \mathcal{X}^{\perp}(\Sigma)$, the only globally defined, unitary timelike vector field normal to Σ such that

$$\langle T, N \rangle \leq -1.$$

• The height function of the surface Σ , $h: \Sigma \to \mathbb{R}$ is defined as

 $h = \pi_{\mathbb{R}} \circ f$.

• The function $\Theta,\, \Theta: \Sigma \to \mathbb{R},$ defined by

 $\Theta = \langle T, N \rangle.$

Special families of spacelike surfaces

• A graph is a surface determined by

 $f_u(x) = (x, u(x))$

where $u : \mathbf{M} \to \mathbb{R}$.

э

Special families of spacelike surfaces

• A graph is a surface determined by

 $f_u(x) = (x, u(x))$

where $u : \mathbf{M} \to \mathbb{R}$.

• $f_u : \mathrm{M} \to \mathrm{M} \times_{\mathbb{L}} \mathbb{R}$ is a spacelike graph if and only if

|Du|<1.

Special families of spacelike surfaces

• A graph is a surface determined by

 $f_u(x) = (x, u(x))$

where $u : \mathbf{M} \to \mathbb{R}$.

• $f_u : \mathrm{M} \to \mathrm{M} \times_{_} \mathbb{R}$ is a spacelike graph if and only if

|Du|<1.

• We will say that a graph is a slice when

 $u(x) = t_0 \quad \forall x \in \mathbf{M}.$

Special families of spacelike surfaces

• A graph is a surface determined by

 $f_u(x) = (x, u(x))$

where $u : \mathbf{M} \to \mathbb{R}$.

• $f_u : \mathrm{M} \to \mathrm{M} \times_{_} \mathbb{R}$ is a spacelike graph if and only if

|Du|<1.

• We will say that a graph is a slice when

$$u(x) = t_0 \ \forall x \in \mathbf{M}.$$

In this case

$$f_{t_0}(\mathbf{M}) = \mathbf{M} \times [\{t_0\}]$$

Maximal and minimal surfaces

• A surface $f : \Sigma \to M \times_{-} \mathbb{R}$ is called a maximal surface if it is a spacelike surface of zero mean curvature.

э

Maximal and minimal surfaces

- A surface f : Σ → M ×_ ℝ is called a maximal surface if it is a spacelike surface of zero mean curvature.
- A graph is maximal, if the function *u* verifies the following differential equation

$$\operatorname{Div}\left(rac{Du}{\sqrt{1-|Du|^2}}
ight)=0, \qquad |Du|<1$$

Maximal and minimal surfaces

- A surface f : Σ → M ×_ ℝ is called a maximal surface if it is a spacelike surface of zero mean curvature.
- A graph is maximal, if the function *u* verifies the following differential equation

$$\operatorname{Div}\left(rac{Du}{\sqrt{1-|Du|^2}}
ight)=0, \qquad |Du|<1$$

• $f: \Sigma \to M \times_+ \mathbb{R}$ is a minimal surface if it has zero mean curvature.

Maximal and minimal surfaces

- A surface f : Σ → M ×_ ℝ is called a maximal surface if it is a spacelike surface of zero mean curvature.
- A graph is maximal, if the function *u* verifies the following differential equation

$${
m Div}\left(rac{Du}{\sqrt{1-|Du|^2}}
ight)=0, \qquad |Du|<1$$

- $f: \Sigma \to M \times_+ \mathbb{R}$ is a minimal surface if it has zero mean curvature.
- A graph is minimal if the function *u* verifies

$$\operatorname{Div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$

A global result $\kappa_{\rm M} \geq 0$ is a necessary condition A local theorem

A global theorem for complete maximal surfaces in $\mathrm{M} \times_{_} \mathbb{R}$

Alma L. Albujer, Luis J. Alías Calabi-Bernstein results for maximal surfaces into $M \times \mathbb{R}$

-

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

A global theorem for complete maximal surfaces in $\mathrm{M} \times_{_} \mathbb{R}$

Theorem

Let $f: \Sigma \to M \times_R \mathbb{R}$ be a complete maximal surface with $K_M \ge 0$ along $\pi_M(f(\Sigma))$. Then,

i) Σ is a totally geodesic surface.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

A global theorem for complete maximal surfaces in $\mathrm{M} \times_{_} \mathbb{R}$

Theorem

Let $f: \Sigma \to M \times_R \mathbb{R}$ be a complete maximal surface with $K_M \ge 0$ along $\pi_M(f(\Sigma))$. Then,

- i) Σ is a totally geodesic surface.
- ii) If, in addition, ${\rm M}$ is not a flat surface, then Σ is a slice over a necessarily complete ${\rm M}.$

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

A global theorem for complete maximal surfaces in $\mathrm{M} \times_{_} \mathbb{R}$

Theorem

Let $f: \Sigma \to M \times_R \mathbb{R}$ be a complete maximal surface with $K_M \ge 0$ along $\pi_M(f(\Sigma))$. Then,

- i) Σ is a totally geodesic surface.
- ii) If, in addition, ${\rm M}$ is not a flat surface, then Σ is a slice over a necessarily complete ${\rm M}.$
 - A Riemannian manifold is called parabolic if any positive superharmonic function is constant. Or, equivalently, if any negative subharmonic function on the surface is constant.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

A global theorem for complete maximal surfaces in $\mathrm{M} \times_{_} \mathbb{R}$

Theorem

Let $f: \Sigma \to M \times_R \mathbb{R}$ be a complete maximal surface with $K_M \ge 0$ along $\pi_M(f(\Sigma))$. Then,

- i) Σ is a totally geodesic surface.
- ii) If, in addition, ${\rm M}$ is not a flat surface, then Σ is a slice over a necessarily complete ${\rm M}.$
 - A Riemannian manifold is called parabolic if any positive superharmonic function is constant. Or, equivalently, if any negative subharmonic function on the surface is constant.
 - Parabolicity Criterium (Ahlfors [1] and Blanc-Fiala-Huber [8]) Any complete Riemannian surface with non-negative Gauss curvature is parabolic.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) The surface Σ endowed with the metric induced from the one of $M\times_{_}\mathbb{R}$ is a parabolic surface.

э

∃ ≥ >

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) The surface Σ endowed with the metric induced from the one of $M\times_{_}\mathbb{R}$ is a parabolic surface.

By the Gauss equation,

$$\mathcal{K}_{\Sigma}=\mathcal{K}_{\mathcal{M}}(\pi)\left(1+\|
abla h\|^2
ight)+rac{1}{2}\|\mathcal{A}\|^2\geq 0$$

-

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) The surface Σ endowed with the metric induced from the one of $M\times_{_}\mathbb{R}$ is a parabolic surface.

By the Gauss equation,

$$K_{\Sigma} = K_M(\pi) \left(1 + \|
abla h \|^2
ight) + rac{1}{2} \|A\|^2 \ge 0$$

ii) $\Phi(\Theta) = \frac{1}{\Theta} < 0$ is a negative subharmonic function.

э
A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) The surface Σ endowed with the metric induced from the one of $M\times_{_}\mathbb{R}$ is a parabolic surface.

By the Gauss equation,

$$K_{\Sigma} = K_M(\pi) \left(1 + \|
abla h \|^2
ight) + rac{1}{2} \|A\|^2 \ge 0$$

ii) $\Phi(\Theta) = \frac{1}{\Theta} < 0$ is a negative subharmonic function. By the chain rule,

$$egin{array}{lll} \Delta \Phi \left(\Theta
ight) = & \Phi' \left(\Theta
ight) \Delta \Theta + \Phi'' \left(\Theta
ight) \|
abla \Theta \|^2 \ = & rac{-\Theta^2 (\Theta^2 - 1) K_{
m M} (\pi) - \| A \|^2}{\Theta^3} \geq 0 \end{array}$$

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- $\Theta = \Theta_0$
- $\Delta \Phi (\Theta) = 0$

< 🗇 🕨

글 🕨 🖌 글 🕨

■ のへで

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- $\Theta = \Theta_0$
- $\Delta\Phi(\Theta) = 0$

 $\sim \rightarrow$

• $||A||^2 = 0 \implies \Sigma$ is totally geodesic.

< 🗇 🕨

- ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q () ●

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- $\Theta = \Theta_0$
- ΔΦ (Θ) = 0

 $\sim \rightarrow$

- $||A||^2 = 0 \implies \Sigma$ is totally geodesic.
- $\begin{array}{l} \Theta_0^2(\Theta_0^2-1)\mathcal{K}_{\mathrm{M}}(\pi)=0\\ \exists q\in\Sigma \ \mathrm{s. t.} \ \mathcal{K}_{\mathrm{M}}(\pi(q))\neq 0 \end{array} \right\} \quad \Rightarrow \quad \Sigma \ \mathrm{is \ a \ slice.}$

ヨト イヨト ヨー のへで

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Proof of the theorem

• $\Theta = \Theta_0$

ΔΦ (Θ) = 0

 $\sim \rightarrow$

• $||A||^2 = 0 \implies \Sigma$ is totally geodesic.

•
$$\begin{array}{c} \Theta_0^2(\Theta_0^2-1)\mathcal{K}_{\mathrm{M}}(\pi)=0\\ \exists q\in\Sigma \text{ s. t. }\mathcal{K}_{\mathrm{M}}(\pi(q))\neq 0 \end{array} \right\} \quad \Rightarrow \quad \Sigma \text{ is a slice}$$

Corollary

Let $f: \Sigma \to M \times_R \mathbb{R}$ be a complete maximal surface with $\mathcal{K}_M \ge 0$ along $\pi_M(f(\Sigma))$. Then, Σ endowed with the metric induced by the immersion f is a parabolic surface.

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

Alma L. Albujer, Luis J. Alías Calabi-Bernstein results for maximal surfaces into $M \times \mathbb{R}$

< (1) >

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• If $K_{\rm M}=$ 0, then Σ is not necessarily a slice.

э

-

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• If $K_{\rm M} = 0$, then Σ is not necessarily a slice.

Example: Let $M = \mathbb{R}^2$, then $M \times_{-} \mathbb{R} = \mathbb{L}^3$ and any spacelike plane other than an horizontal one is a totally geodesic surface.

Moreover, as any totally geodesic surface in \mathbb{L}^3 must be a plane, the Calabi-Bernstein theorem is a consequence of the theorem.

A global result ${\cal K}_{M} \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• If $K_{\rm M}=$ 0, then Σ is not necessarily a slice.

Example: Let $M = \mathbb{R}^2$, then $M \times_{-} \mathbb{R} = \mathbb{L}^3$ and any spacelike plane other than an horizontal one is a totally geodesic surface.

Moreover, as any totally geodesic surface in \mathbb{L}^3 must be a plane, the Calabi-Bernstein theorem is a consequence of the theorem.

• The assumption $K_{\rm M} \ge 0$ is necessary.

A global result ${\cal K}_{M} \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• If $K_{\rm M}=$ 0, then Σ is not necessarily a slice.

Example: Let $M = \mathbb{R}^2$, then $M \times_{-} \mathbb{R} = \mathbb{L}^3$ and any spacelike plane other than an horizontal one is a totally geodesic surface.

Moreover, as any totally geodesic surface in \mathbb{L}^3 must be a plane, the Calabi-Bernstein theorem is a consequence of the theorem.

• The assumption $K_{\rm M} \ge 0$ is necessary.

Example: There exist complete maximal, but non totally geodesic graphs when M is the hyperbolic plane \mathbb{H}^2 .

To see this, we need a duality result.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

A duality result

Theorem

Let M be an orientable surface and let $\Omega \subseteq M$ be a simply connected domain. There exists a C^2 solution with non constant gradient of the minimal surface equation on Ω

$$\operatorname{Div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$

if and only if there exists a \mathcal{C}^2 solution with non constant gradient of the maximal surface equation on Ω

$$\operatorname{Div}\left(rac{D\omega}{\sqrt{1-|D\omega|^2}}
ight)=0, \quad |D\omega|^2<1.$$

A global result ${\cal K}_{\mathbf{M}} \geq \mathbf{0}$ is a necessary condition A local theorem

A duality result

Theorem

Let M be an orientable surface and let $\Omega \subseteq M$ be a simply connected domain. There exists a C^2 solution with non constant gradient of the minimal surface equation on Ω

$$\operatorname{Div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$

if and only if there exists a \mathcal{C}^2 solution with non constant gradient of the maximal surface equation on Ω

$$\mathrm{Div}\left(rac{D\omega}{\sqrt{1-|D\omega|^2}}
ight)=0, \quad |D\omega|^2<1.$$

• Alías and Palmer, [5], proved this result in the case $M = \mathbb{R}^2$.

A global result ${\cal K}_{\mathbf{M}} \geq \mathbf{0}$ is a necessary condition A local theorem

A duality result

Theorem

Let M be an orientable surface and let $\Omega \subseteq M$ be a simply connected domain. There exists a C^2 solution with non constant gradient of the minimal surface equation on Ω

$$\operatorname{Div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$

if and only if there exists a \mathcal{C}^2 solution with non constant gradient of the maximal surface equation on Ω

$$\operatorname{Div}\left(\frac{D\omega}{\sqrt{1-|D\omega|^2}}\right) = 0, \quad |D\omega|^2 < 1.$$

$$D\omega = J\left(\frac{Du}{\sqrt{1+|Du|^2}}\right)$$

A global result ${\cal K}_{\rm M} \geq 0$ is a necessary condition A local theorem

Dual graphs

 Let f_u(x) = (x, u(x)), (M, g_u), be a minimal graph over M×₊ ℝ and f_ω(x) = (x, ω(x)), (M, g_ω), its maximal dual graph over M×₋ ℝ, where M is a simply connected, orientable, complete surface.

3

A global result ${\cal K}_{\rm M} \geq 0$ is a necessary condition A local theorem

Dual graphs

 Let f_u(x) = (x, u(x)), (M, g_u), be a minimal graph over M×₊ ℝ and f_ω(x) = (x, ω(x)), (M, g_ω), its maximal dual graph over M×₋ ℝ, where M is a simply connected, orientable, complete surface.

Comparing the metric.

• Let $G \subset M$ be the set $G = \{x \in M : Du(x) \neq 0\}$. Then $\{E_1, E_2\}$, where $E_1 = \frac{Du}{|Du|} E_2 = \frac{D\omega}{|D\omega|}$, is an orthonormal basis of $\mathcal{X}(G)$.

A global result ${\cal K}_{\mathbf{M}} \geq 0$ is a necessary condition A local theorem

Dual graphs

 Let f_u(x) = (x, u(x)), (M, g_u), be a minimal graph over M×₊ ℝ and f_ω(x) = (x, ω(x)), (M, g_ω), its maximal dual graph over M×₋ ℝ, where M is a simply connected, orientable, complete surface.

Comparing the metric.

• Let $G \subset M$ be the set $G = \{x \in M : Du(x) \neq 0\}$. Then $\{E_1, E_2\}$, where $E_1 = \frac{Du}{|Du|} E_2 = \frac{D\omega}{|D\omega|}$, is an orthonormal basis of $\mathcal{X}(G)$. $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $g_u = \begin{pmatrix} 1 + |Du|^2 & 0 \\ 0 & 1 \end{pmatrix}$, $g_\omega = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{1+|Du|^2} \end{pmatrix}$

A global result ${\cal K}_{\mathbf{M}} \geq 0$ is a necessary condition A local theorem

Dual graphs

 Let f_u(x) = (x, u(x)), (M, g_u), be a minimal graph over M×₊ ℝ and f_ω(x) = (x, ω(x)), (M, g_ω), its maximal dual graph over M×₋ ℝ, where M is a simply connected, orientable, complete surface.

Comparing the metric.

• Let $G \subset M$ be the set $G = \{x \in M : Du(x) \neq 0\}$. Then $\{E_1, E_2\}$, where $E_1 = \frac{Du}{|Du|} E_2 = \frac{D\omega}{|D\omega|}$, is an orthonormal basis of $\mathcal{X}(G)$. $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $g_u = \begin{pmatrix} 1 + |Du|^2 & 0 \\ 0 & 1 \end{pmatrix}$, $g_\omega = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{1 + |Du|^2} \end{pmatrix}$ $g_\omega \leq g \leq g_u$

A global result ${\cal K}_{\mathbf{M}} \geq 0$ is a necessary condition A local theorem

Dual graphs

 Let f_u(x) = (x, u(x)), (M, g_u), be a minimal graph over M×₊ ℝ and f_ω(x) = (x, ω(x)), (M, g_ω), its maximal dual graph over M×₋ ℝ, where M is a simply connected, orientable, complete surface.

Comparing the metric.

- Let $G \subset M$ be the set $G = \{x \in M : Du(x) \neq 0\}$. Then $\{E_1, E_2\}$, where $E_1 = \frac{Du}{|Du|} E_2 = \frac{D\omega}{|D\omega|}$, is an orthonormal basis of $\mathcal{X}(G)$. $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $g_u = \begin{pmatrix} 1 + |Du|^2 & 0 \\ 0 & 1 \end{pmatrix}$, $g_\omega = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{1 + |Du|^2} \end{pmatrix}$ $g_\omega \leq g \leq g_u$
- (M, g_u) is always a complete minimal graph.
- If $|Du|^2$ is bounded, (M, g_ω) is a complete maximal graph.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Dual graphs

Comparing the second fundamental form.

• Let $X \in \mathcal{X}(M)$,

$$\begin{aligned} A_{u}X &= -\frac{1}{\sqrt{1+|Du|^{2}}}D_{X}Du + \frac{g(D_{X}Du,Du)}{\left(1+|Du|^{2}\right)^{3/2}}Du, \\ A_{\omega}X &= -\frac{1}{\sqrt{1-|D\omega|^{2}}}D_{X}D\omega - \frac{g(D_{X}D\omega,D\omega)}{\left(1-|D\omega|^{2}\right)^{3/2}}D\omega \end{aligned}$$

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Dual graphs

Comparing the second fundamental form.

• Let $X \in \mathcal{X}(M)$,

$$A_{u}X = -\frac{1}{\sqrt{1+|Du|^{2}}}D_{X}Du + \frac{g(D_{X}Du, Du)}{(1+|Du|^{2})^{3/2}}Du,$$

$$A_{\omega}X = -\frac{1}{\sqrt{1-|D\omega|^{2}}}D_{X}D\omega - \frac{g(D_{X}D\omega, D\omega)}{(1-|D\omega|^{2})^{3/2}}D\omega$$

$$A_{\omega}X = -J(D_{X}Du),$$

$$A_{u}X = J(D_{X}D\omega)$$

э

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

Dual graphs

Comparing the second fundamental form.

• Let $X \in \mathcal{X}(M)$,

$$A_{u}X = -\frac{1}{\sqrt{1+|Du|^{2}}}D_{X}Du + \frac{g(D_{X}Du, Du)}{(1+|Du|^{2})^{3/2}}Du,$$
$$A_{\omega}X = -\frac{1}{\sqrt{1-|D\omega|^{2}}}D_{X}D\omega - \frac{g(D_{X}D\omega, D\omega)}{(1-|D\omega|^{2})^{3/2}}D\omega$$
$$A_{\omega}X = -J(D_{X}Du),$$
$$A_{u}X = J(D_{X}D\omega)$$

• A maximal graph is non totally geodesic if and only if *Du* is not constant.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• The assumption $K_{\rm M} \ge 0$ is necessary.

Example: There exist complete maximal, but non totally geodesic graphs when M is the hyperbolic plane \mathbb{H}^2 .

Consider the minimal graph over $\mathbb{H}^2\times_+\mathbb{R}$ determined by the function

$$u(x,y) = \log(x^2 + y^2).$$

(Montaldo and Onnis [10])

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

• The assumption $K_{\rm M} \ge 0$ is necessary.

Example: There exist complete maximal, but non totally geodesic graphs when M is the hyperbolic plane \mathbb{H}^2 .

Consider the minimal graph over $\mathbb{H}^2\times_+\mathbb{R}$ determined by the function

$$u(x,y) = \log(x^2 + y^2).$$

(Montaldo and Onnis [10])

• Du is non constant and never zero \rightsquigarrow The corresponding maximal dual graph is non totally geodesic.

A global result ${\cal K}_M \geq 0$ is a necessary condition A local theorem

The assumptions on $K_{\rm M}$

$\bullet\,$ The assumption ${\it K}_{\rm M} \geq 0$ is necessary.

Example: There exist complete maximal, but non totally geodesic graphs when M is the hyperbolic plane \mathbb{H}^2 .

Consider the minimal graph over $\mathbb{H}^2\times_+\mathbb{R}$ determined by the function

$$u(x,y) = \log(x^2 + y^2).$$

(Montaldo and Onnis [10])

- Du is non constant and never zero → The corresponding maximal dual graph is non totally geodesic.
- $|Du|^2 = \frac{4y^2}{x^2+y^2} \le 4 \quad \rightsquigarrow$ The corresponding maximal dual graph is complete.

A global result $\kappa_{\rm M} \geq$ 0 is a necessary condition A local theorem

A local result on maximal surfaces in $M\times_{_}\mathbb{R}$

Theorem

Let M be an analytic Riemannian surface and let $f: \Sigma \to M \times_{\mathbb{R}} \mathbb{R}$ be a maximal surface such that $K_{M}(\pi) \geq 0$. Let $p \in \Sigma$, and R > 0 be such that the geodesic disc of radius R about p satisfies $D(p, R) \subset \subset \Sigma$. Then for all 0 < r < R,

$$0 \leq \int_{D(p,r)} \|A_q\|^2 dA \leq c_r \frac{L(r)}{r \log(R/r)}$$

where L(r) denotes the length of $\partial D(p, r)$, and

$$c_r = rac{\pi^2}{4} rac{(1+a_r^2)^2}{a_r ext{arctan}(a_r)} > 0.$$

Here, a_r is a positive number such that $-a_r \leq \Theta(q) \leq -1$ is verifies for all $q \in D(p, r)$.

A global result ${\cal K}_{\rm M} \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) $K_{\Sigma} \ge 0$ as in the global theorem.

ㅋ ㅋ ㅋ

A global result $\kappa_{\rm M} \geq 0$ is a necessary condition A local theorem

Proof of the theorem

i) $K_{\Sigma} \ge 0$ as in the global theorem.

Lemma (Alías, Palmer [4])

Let Σ be an analytic Riemannian surface with $K_{\Sigma} \geq 0$. Let $u \in C^{\infty}(\Sigma)$ which satisfies

$$u\Delta u \geq 0$$

on Σ . Then, for 0 < r < R,

$$\int_{D(p,r)} u\Delta u \leq \frac{2L(r)}{r\log(R/r)} \sup_{D(p,R)} u^2,$$

where p is a fixed point in Σ and $D_r \subset D_R \subset \subset \Sigma$.

A global result ${\cal K}_{\rm M} \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- i) $K_{\Sigma} \geq 0$ as in the global theorem.
- ii) $u = \arctan \Theta$ satisfies the hypothesis of the lemma.

-

э

A global result ${\cal K}_{\rm M} \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- i) $K_{\Sigma} \geq 0$ as in the global theorem.
- ii) $u = \arctan \Theta$ satisfies the hypothesis of the lemma.
- iii) The theorem is proved applying the lemma to u.

A global result $K_{\rm M} \geq 0$ is a necessary condition A local theorem

Proof of the theorem

- i) $K_{\Sigma} \geq 0$ as in the global theorem.
- ii) $u = \arctan \Theta$ satisfies the hypothesis of the lemma.
- iii) The theorem is proved applying the lemma to u.

Corollary

Let M be an analytic Riemannian surface. Then, the only complete maximal surfaces, $f: \Sigma \to M \times_R$, with $K_M \ge 0$ are the totally geodesic ones.

Entire maximal graphs

Proposition (Alías, Romero, Sánchez [7])

Consider $M\times_{_}\mathbb{R}$ where M is simply connected. Then every complete spacelike surface Σ is an entire graph. Moreover, M is compact if and only if Σ is compact too.

Entire maximal graphs

Proposition (Alías, Romero, Sánchez [7])

Consider $M\times_{-}\mathbb{R}$ where M is simply connected. Then every complete spacelike surface Σ is an entire graph. Moreover, M is compact if and only if Σ is compact too.

- The Calabi-Bernstein theorem can be formulated in two equivalent ways:
 - The only complete maximal surfaces in \mathbb{L}^3 are the affine spacelike graphs.
 - $\bullet\,$ The only entire maximal graphs in \mathbb{L}^3 are the affine spacelike ones.

Entire maximal graphs

Proposition (Alías, Romero, Sánchez [7])

Consider $M\times_{-}\mathbb{R}$ where M is simply connected. Then every complete spacelike surface Σ is an entire graph. Moreover, M is compact if and only if Σ is compact too.

- The Calabi-Bernstein theorem can be formulated in two equivalent ways:
 - The only complete maximal surfaces in \mathbb{L}^3 are the affine spacelike graphs.
 - $\bullet\,$ The only entire maximal graphs in \mathbb{L}^3 are the affine spacelike ones.

Entire maximal graphs

Theorem

Let M be a complete surface with $K_M \ge 0$ and let $f_u : M \to M \times_R \mathbb{R}$ be an entire maximal graph. Then,

- i) The graph is totally geodesic.
- ii) If, in addition, ${\rm M}$ is not a flat surface, the graph is a slice.

Entire maximal graphs

Theorem

Let M be a complete surface with $K_M \ge 0$ and let $f_u : M \to M \times_R \mathbb{R}$ be an entire maximal graph. Then,

- i) The graph is totally geodesic.
- ii) If, in addition, ${\rm M}$ is not a flat surface, the graph is a slice.

Proof of the theorem

• There exists a complete surface (M, g^*) conformal to (M, g_u) which is parabolic.

Entire maximal graphs

Theorem

Let M be a complete surface with $K_M \ge 0$ and let $f_u : M \to M \times_R \mathbb{R}$ be an entire maximal graph. Then,

- i) The graph is totally geodesic.
- ii) If, in addition, ${\rm M}$ is not a flat surface, the graph is a slice.

Proof of the theorem

- There exists a complete surface (M, g^*) conformal to (M, g_u) which is parabolic.
- Superharmonic functions are invariant under conformal changes of metric in the 2-dimensional case.
Introduction Notation and basic tools Complete maximal surfaces Entire maximal graphs References

References

- Ahlfors, L. V., Sur le type d'une surface de Riemann, C. R. Acad. Sc. Paris 201 (1935), 30–32.
- [2] Albujer, A. L. and Alías, L. J., On Calabi-Bernstein results for maximal surfaces in Lorentzian products, preprint 2005.
- [3] Alías, L. J. and Dajczer, M., Bernstein-type results in $\mathbb{M}^2 \times \mathbb{R}$, preprint 2005.
- [4] Alías, L. J. and Palmer, B., Zero mean curvature surfaces with non-negative curvature in flat Lorentzian 4-spaces, R. Soc. Lond. Proc. Ser. A. Math. Phys. Eng. Sci. 455 (1999), 631–636.
- [5] Alías, L. J. and Palmer, B., A duality result between the minimal surface equation and the maximal surface equation, An. Acad. Brasil. Ciênc. 73 (2001), 161–164.
- [6] Alías, L.J. and Palmer, B., On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem, Bull. London Math. Soc. 33 (2001), 454–458.
- [7] Alías, L. J., Romero, A. and Sánchez, M., Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 27 (1995), 71–84.
- [8] Huber, A., On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72.
- [9] Latorre, J. M. and Romero, A., New examples of Calabi-Bernstein problems for some nonlinear equations, Differential Geom. Appl. 15 (2001), 153–163.
- [10] Montaldo, S. and Onnis, I. I., *Invariant surfaces in* H² × ℝ with constant (mean or Gauss) curvature, Proceedings of XIII Workshop on Geometry and Physics, Murcia 2004, Publ. de la RSME 9 (2005), 91–103.
- [11] Romero, A., Simple proof of Calabi-Bernstein's theorem on maximal surfaces, Proc. Amer. Math. Soc. 124 (1996), 1315–1317.

On Calabi-Bernstein results for maximal surfaces in Lorentzian products

Alma L. Albujer, Luis J. Alías

University of Murcia

November, 2005

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで