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Our ambient space

Let (M2, g) be a connected Riemannian surface.

Consider the product manifold M× R endowed with the metric

〈 , 〉 = π∗M(g) + επ∗R(dt2), ε = ±1

ε = 1  
{

Riemannian product.(
M× R, π∗M(g) + π∗R(dt2)

)
⇒ M×+ R

ε = −1  
{

Lorentzian product. Our ambient space.(
M× R, π∗M(g)− π∗R(dt2)

)
⇒ M× R
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Notation and basic tools

Let f : Σ → M× R be a spacelike surface.

T = ∂̃t ∈ X (M× R) is a globally defined, unitary timelike vector
field 

M× R is time-orientable.

Exists N ∈ X⊥(Σ), the only globally defined, unitary timelike vector
field normal to Σ such that

〈T , N〉 ≤ −1.

The height function of the surface Σ, h : Σ → R is defined as

h = πR ◦ f .

The function Θ, Θ : Σ → R, defined by

Θ = 〈T ,N〉.
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Special families of spacelike surfaces

A graph is a surface determined by

fu(x) = (x , u(x))

where u : M → R.

fu : M → M× R is a spacelike graph if and only if

|Du| < 1.

We will say that a graph is a slice when

u(x) = t0 ∀x ∈ M.

In this case

ft0(M) = M× {t0}
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Maximal and minimal surfaces

A surface f : Σ → M× R is called a maximal surface if it is a
spacelike surface of zero mean curvature.

A graph is maximal, if the function u verifies the following
differential equation

Div

(
Du√

1− |Du|2

)
= 0, |Du| < 1

f : Σ → M×+ R is a minimal surface if it has zero mean curvature.

A graph is minimal if the function u verifies

Div

(
Du√

1 + |Du|2

)
= 0
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Alma L. Albujer, Luis J. Aĺıas Calabi-Bernstein results for maximal surfaces into M × R



Introduction
Notation and basic tools

Complete maximal surfaces
Entire maximal graphs

References

A global result
KM ≥ 0 is a necessary condition
A local theorem

A global theorem for complete maximal surfaces in M× R

Theorem

Let f : Σ → M× R be a complete maximal surface with KM ≥ 0 along
πM(f (Σ)). Then,

i) Σ is a totally geodesic surface.

ii) If, in addition, M is not a flat surface, then Σ is a slice over a
necessarily complete M.

A Riemannian manifold is called parabolic if any positive
superharmonic function is constant. Or, equivalently, if any negative
subharmonic function on the surface is constant.

Parabolicity Criterium (Ahlfors [1] and Blanc-Fiala-Huber [8])

Any complete Riemannian surface with non-negative Gauss
curvature is parabolic.
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A global result
KM ≥ 0 is a necessary condition
A local theorem

Proof of the theorem

i) The surface Σ endowed with the metric induced from the one of
M× R is a parabolic surface.

By the Gauss equation,

KΣ = KM(π)
(
1 + ‖∇h‖2

)
+

1

2
‖A‖2 ≥ 0

ii) Φ(Θ) = 1
Θ < 0 is a negative subharmonic function.

By the chain rule,

∆Φ (Θ) = Φ′ (Θ)∆Θ + Φ′′ (Θ) ‖∇Θ‖2

= −Θ2(Θ2−1)KM(π)−‖A‖2

Θ3 ≥ 0
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A global result
KM ≥ 0 is a necessary condition
A local theorem

Proof of the theorem

Θ = Θ0

∆Φ (Θ) = 0

 

‖A‖2 = 0 ⇒ Σ is totally geodesic.

Θ2
0(Θ

2
0 − 1)KM(π) = 0

∃q ∈ Σ s. t. KM(π(q)) 6= 0

}
⇒ Σ is a slice.

Corollary

Let f : Σ → M× R be a complete maximal surface with KM ≥ 0 along
πM(f (Σ)). Then, Σ endowed with the metric induced by the immersion f
is a parabolic surface.
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A global result
KM ≥ 0 is a necessary condition
A local theorem

A duality result

Theorem

Let M be an orientable surface and let Ω ⊆ M be a simply connected
domain. There exists a C2 solution with non constant gradient of the
minimal surface equation on Ω

Div

(
Du√

1 + |Du|2

)
= 0

if and only if there exists a C2 solution with non constant gradient of the
maximal surface equation on Ω

Div

(
Dω√

1− |Dω|2

)
= 0, |Dω|2 < 1.

Aĺıas and Palmer, [5], proved this result in the case M = R2.
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Dω = J

(
Du√

1 + |Du|2

)
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A global result
KM ≥ 0 is a necessary condition
A local theorem

Dual graphs

Let fu(x) = (x , u(x)), (M, gu), be a minimal graph over M×+ R and
fω(x) = (x , ω(x)), (M, gω), its maximal dual graph over M× R,
where M is a simply connected, orientable, complete surface.

Comparing the metric.

Let G ⊂ M be the set G = {x ∈ M : Du(x) 6= 0}. Then {E1,E2},
where E1 = Du

|Du| E2 = Dω
|Dω| , is an orthonormal basis of X (G ).

g =

(
1 0
0 1

)
, gu =

(
1 + |Du|2 0

0 1

)
, gω =

(
1 0
0 1

1+|Du|2

)
gω ≤ g ≤ gu

(M, gu) is always a complete minimal graph.

If |Du|2 is bounded, (M, gω) is a complete maximal graph.
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KM ≥ 0 is a necessary condition
A local theorem

Dual graphs

Comparing the second fundamental form.

Let X ∈ X (M),

AuX = − 1√
1 + |Du|2

DXDu +
g(DXDu,Du)

(1 + |Du|2)3/2
Du,

AωX = − 1√
1− |Dω|2

DXDω − g(DXDω, Dω)

(1− |Dω|2)3/2
Dω

AωX = −J(DXDu),

AuX = J(DXDω)

A maximal graph is non totally geodesic if and only if Du is not
constant.
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A global result
KM ≥ 0 is a necessary condition
A local theorem

The assumptions on KM

The assumption KM ≥ 0 is necessary.

Example: There exist complete maximal, but non totally
geodesic graphs when M is the hyperbolic plane H2.

Consider the minimal graph over H2 ×+ R determined by the
function

u(x , y) = log(x2 + y2).

(Montaldo and Onnis [10])

Du is non constant and never zero  The corresponding
maximal dual graph is non totally geodesic.

|Du|2 = 4y2

x2+y2 ≤ 4  The corresponding maximal dual graph
is complete.
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Alma L. Albujer, Luis J. Aĺıas Calabi-Bernstein results for maximal surfaces into M × R



Introduction
Notation and basic tools

Complete maximal surfaces
Entire maximal graphs

References

A global result
KM ≥ 0 is a necessary condition
A local theorem

The assumptions on KM

The assumption KM ≥ 0 is necessary.

Example: There exist complete maximal, but non totally
geodesic graphs when M is the hyperbolic plane H2.

Consider the minimal graph over H2 ×+ R determined by the
function

u(x , y) = log(x2 + y2).

(Montaldo and Onnis [10])

Du is non constant and never zero  The corresponding
maximal dual graph is non totally geodesic.

|Du|2 = 4y2

x2+y2 ≤ 4  The corresponding maximal dual graph
is complete.

Alma L. Albujer, Luis J. Aĺıas Calabi-Bernstein results for maximal surfaces into M × R



Introduction
Notation and basic tools

Complete maximal surfaces
Entire maximal graphs

References

A global result
KM ≥ 0 is a necessary condition
A local theorem

A local result on maximal surfaces in M× R

Theorem

Let M be an analytic Riemannian surface and let f : Σ → M× R be a
maximal surface such that KM(π) ≥ 0. Let p ∈ Σ, and R > 0 be such
that the geodesic disc of radius R about p satisfies D(p,R) ⊂⊂ Σ. Then
for all 0 < r < R,

0 ≤
∫

D(p,r)

‖Aq‖2dA ≤ cr
L(r)

r log(R/r)

where L(r) denotes the length of ∂D(p, r), and

cr =
π2

4

(1 + a2
r )

2

ararctan(ar )
> 0.

Here, ar is a positive number such that −ar ≤ Θ(q) ≤ −1 is verifies for
all q ∈ D(p, r).
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Proof of the theorem

i) KΣ ≥ 0 as in the global theorem.

ii) u = arctanΘ satisfies the hypothesis of the lemma.

iii) The theorem is proved applying the lemma to u.

Corollary

Let M be an analytic Riemannian surface. Then, the only complete
maximal surfaces, f : Σ → M× R, with KM ≥ 0 are the totally
geodesic ones.
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Let M be an analytic Riemannian surface. Then, the only complete
maximal surfaces, f : Σ → M× R, with KM ≥ 0 are the totally
geodesic ones.

Lemma (Aĺıas, Palmer [4])

Let Σ be an analytic Riemannian surface with KΣ ≥ 0. Let u ∈ C∞(Σ)
which satisfies

u∆u ≥ 0

on Σ. Then, for 0 < r < R,∫
D(p,r)

u∆u ≤ 2L(r)

r log(R/r)
sup

D(p,R)

u2,

where p is a fixed point in Σ and Dr ⊂ DR ⊂⊂ Σ.
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Entire maximal graphs

Proposition (Aĺıas, Romero, Sánchez [7])

Consider M× R where M is simply connected. Then every complete
spacelike surface Σ is an entire graph. Moreover, M is compact if and
only if Σ is compact too.

The Calabi-Bernstein theorem can be formulated in two equivalent
ways:

The only complete maximal surfaces in L3 are the affine spacelike
graphs.

The only entire maximal graphs in L3 are the affine spacelike ones.
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Theorem

Let M be a complete surface with KM ≥ 0 and let fu : M → M× R be
an entire maximal graph. Then,

i) The graph is totally geodesic.

ii) If, in addition, M is not a flat surface, the graph is a slice.

Proof of the theorem

There exists a complete surface (M, g∗) conformal to (M, gu) which
is parabolic.

Superharmonic functions are invariant under conformal changes of
metric in the 2-dimensional case.
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