Normal trajectories in stationary spacetimes with critical asymptotic behavior

Rossella Bartolo¹ and Anna Maria Candela²

 ¹ Dipartimento di Matematica, Politecnico di Bari, Via G. Amendola 126/B, 70126 Bari, Italy
 ² Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy

Abstract

The aim of this note is to study the existence of normal trajectories joining two given submanifolds under the action of an external field in a stationary spacetime. Here, it is assumed that both the growth of the potential and that one of the coefficients of the metric are *critical* in a suitable sense.

1 Introduction

Given a Lorentzian manifold $(M, \langle \cdot, \cdot \rangle_L)$, a function $V \in C^1(M \times [0, T^*], \mathbb{R})$ $(T^* > 0)$, two submanifolds S, Σ of M and an *arrival time* $T \in [0, T^*]$, the aim of this note is to use variational tools in order to find accurate conditions ensuring that S and Σ can be connected by means of normal trajectories under the action of potential V in time T, i.e., to look for solutions of equation

$$D_s^L \dot{z} + \nabla_L V(z, s) = 0 \quad \text{for all } s \in [0, T]$$

$$(1.1)$$

which satisfy boundary conditions

$$\begin{cases} z(0) \in S, \ z(T) \in \Sigma, \\ \dot{z}(0) \in T_{z(0)}S^{\perp}, \dot{z}(T) \in T_{z(T)}\Sigma^{\perp} \end{cases}$$
(1.2)

(here, D_s^L denotes the covariant derivative along z induced by the Levi–Civita connection of metric $\langle \cdot, \cdot \rangle_L$, while $\nabla_L V(z, s)$ is the gradient of V with respect to z).

As such a problem cannot be solved in general, we limit our interest to a suitable class of Lorentzian manifolds which is "good" from a variational point of view. **Definition 1.1** A Lorentzian manifold $(M, \langle \cdot, \cdot \rangle_L)$, given by a global splitting $M = M_0 \times \mathbb{R}$, is a (standard) stationary spacetime if $(M_0, \langle \cdot, \cdot \rangle)$ is a finite dimensional connected Riemannian manifold and its metric is

$$\langle \zeta, \zeta' \rangle_L = \langle \xi, \xi' \rangle + \langle \delta(x), \xi \rangle \tau' + \langle \delta(x), \xi' \rangle \tau - \beta(x) \tau \tau'$$
(1.3)

for any $z = (x, t) \in M$ and $\zeta = (\xi, \tau)$, $\zeta' = (\xi', \tau') \in T_z M \equiv T_x M_0 \times \mathbb{R}$, where δ and β are respectively a smooth vector field and a smooth strictly positive scalar field on M_0 .

In particular, M is named (standard) static if $\delta \equiv 0$.

Notice that the study of orthogonal trajectories joining S to Σ under the action of potential V in a stationary spacetime is interesting not only from a physical point of view, since these spacetimes represent time-independent gravitational fields (as, for example, Kerr spacetime) but also from a mathematical one.

In fact, from a variational viewpoint our problem (1.1), (1.2) is equivalent to find critical points of action functional

$$f_V(z) = \frac{1}{2} \int_0^T \langle \dot{z}, \dot{z} \rangle_L ds - \int_0^T V(z, s) \ ds$$

on a suitable set of curves (for more details, see Section 2).

Clearly, when $V \equiv 0$ and $S = \{z_0\}$, $\Sigma = \{z_1\}$ (with $z_0 = (x_0, t_0)$, $z_1 = (x_1, t_1) \in M$), the given problem reduces to the study of geodesic connectedness between z_0 and z_1 in M and, as geodesics are invariant by affine reparametrizations, arrival time T between the fixed events is not relevant (in fact, in most of the related papers it is assumed T = 1). In this case, in pioneer paper [9] the authors provided a variational principle in order to overcome the unboundedness of action functional f_0 , so that looking for geodesics is reduced to studying critical points of the new functional

$$J(x) = \int_0^T \langle \dot{x}, \dot{x} \rangle \ ds \ + \ \int_0^T \frac{\langle \delta(x), \dot{x} \rangle^2}{\beta(x)} \ ds \ - \ K_t^2(x) \ \int_0^T \frac{1}{\beta(x)} \ ds \ (1.4)$$

in $\Omega^T(x_0, x_1)$, suitable set of curves joining x_0 to x_1 in a time T, where it is

$$K_t(x) = \left(\Delta_t - \int_0^T \frac{\langle \delta(x), \dot{x} \rangle}{\beta(x)} \, ds\right) \, \left(\int_0^T \frac{1}{\beta(x)} \, ds\right)^{-1}, \tag{1.5}$$

with $\Delta_t = t_1 - t_0$.

According to some recent results in [2], careful estimates of J allow one to prove that z_0 and z_1 are geodesically connected in assumptions

R. Bartolo – A.M. Candela

- (H_1) Riemannian manifold $(M_0, \langle \cdot, \cdot \rangle)$ is complete and smooth (at least C^3),
- (H₂) there exist $\mu_1, \mu_2 \ge 0, k_1, k_2 \in \mathbb{R}$ and a point $\bar{x} \in M_0$ such that for all $x \in M_0$ it is

$$0 < \beta(x) \le \mu_1 d^2(x, \bar{x}) + k_1,$$

$$\sqrt{\langle \delta(x), \delta(x) \rangle} \le \mu_2 d(x, \bar{x}) + k_2,$$
(1.6)

(here, $d(\cdot, \cdot)$ denotes the distance canonically associated to Riemannian metric $\langle \cdot, \cdot \rangle$ on M_0).

More in general, if $V \equiv 0$ but $S = P \times \{t_0\}$ and $\Sigma = Q \times \{t_1\}$, where

(H_3) P and Q are two closed submanifolds of M_0 such that at least one of them is compact,

the existence of normal geodesics joining S to Σ has been studied both in a stationary spacetime, if β is far away from zero and both δ and β have a sublinear growth (see [8]), and in a static one but in growth condition (1.6) (see [6]).

On the other hand, if $V \neq 0$ and $P = \{x_0\}$, $Q = \{x_1\}$, equation (1.1) has been studied not only in a Riemannian manifold (see [7]) but also both in a static and in a stationary one when potential V is time-independent, i.e.,

$$V(z,s) \equiv V(x,s)$$
 for all $z = (x,t) \in M, s \in [0,T^*]$ (1.7)

(see [1], respectively [3]). In all these cases if V satisfies assumption

 (H_4) there exist $\lambda \ge 0, k \in \mathbb{R}, \bar{x} \in M_0$ such that it is

$$V(x,s) \le \lambda d^2(x,\bar{x}) + k \quad \text{for all } z = (x,t) \in M, \, s \in [0,T^*],$$

the existence of trajectories, which are solutions of (1.1), is not guaranteed (in fact, some counterexamples can be found, see Remark 1.4). Anyway, such solutions exist surely if coefficient λ in (H_4) and arrival time T are related by the further condition

$$\lambda T^2 < \frac{\pi^2}{2}.\tag{1.8}$$

In the more general setting, i.e., if P and Q are not a singleton but (H_3) holds, some results on a Riemannian manifold M_0 have been obtained in [5] up to assume a little bit stronger condition than (H_4) :

 (H_4^*) there exist $\lambda \ge 0, k \in \mathbb{R}$ such that

 $V(x,s) \le \lambda d^2(x,A) + k \quad \text{for all } z = (x,t) \in M, \ s \in [0,T^*],$

with A = P if Q is compact, or A = Q if P is compact, where $d(x, A) = \inf_{z \in A} d(x, z)$.

In this note we consider problem (1.1), (1.2) on a stationary spacetime when potential V is non-trivial and time-independent.

As previously remarked, a variational formulation entirely based on the Riemannian part of the spacetime can be stated; more precisely, the given problem reduces to find critical points of functional

$$J_V(x) = \frac{1}{2}J(x) - \int_0^T V(x,s) \, ds \tag{1.9}$$

on $\Omega^T(P,Q)$, suitable set of curves joining P to Q in a time T (for the exact definition, see Section 2),

Thus, the main theorem of this note can be stated as follows.

Theorem 1.2 Let $M = M_0 \times \mathbb{R}$ be a (standard) stationary spacetime which satisfies hypotheses (H_1) , (H_2) and let $V \in C^1(M \times [0, T^*], \mathbb{R})$, $T^* > 0$, be a potential satisfying condition (1.7).

Moreover, let $S = P \times \{t_0\}$ and $\Sigma = Q \times \{t_1\}$ be two submanifolds of M with $t_0, t_1 \in \mathbb{R}$ and P, Q two submanifolds of M_0 such to satisfy (H_3) .

So, if potential V and arrival time $T \in [0, T^*]$ are such that (H_4^*) and (1.8) hold, S and Σ can be joined by at least one normal trajectory which solves (1.1) and (1.2).

Remark 1.3 If, in addition to the assumptions of Theorem 1.2, P and Q are both contractible in M_0 , then a direct application of Ljusternik–Schnirelman Theory implies some multiplicity results either if M_0 is non–contractible in itself or if it is not (see, e.g., [6]).

Remark 1.4 Even if both P and Q are singleton, counterexamples can be construct both if hypothesis (H_4) with (1.8) fails (see, e.g., [7, Example 3.6]) and if (H_2) fails (see [4, Section 7] if β grows more than quadratically or [2, Example 2.7] if δ grows more than linearly).

2 Variational setting and abstract tools

Let $(M, \langle \cdot, \cdot \rangle_L)$ be a stationary spacetime with $M = M_0 \times \mathbb{R}$ and $\langle \cdot, \cdot \rangle_L$ as in (1.3), where $(M_0, \langle \cdot, \cdot \rangle)$ is a Riemannian manifold such that (H_1) holds. Moreover, let P and Q be two submanifolds of M_0 and fix $t_0, t_1 \in \mathbb{R}$, so that it is $S = P \times \{t_0\}$ and $\Sigma = Q \times \{t_1\}$. Now, fixed T > 0, for simplicity assume I = [0, T].

As we want to work by means of variational tools, let us recall some basic definitions (for more details, see, e.g., [10]).

R. BARTOLO – A.M. CANDELA

By Nash Embedding Theorem we can assume that M_0 is a submanifold of an Euclidean space \mathbb{R}^N and $\langle \cdot, \cdot \rangle$ is the restriction to M_0 of the Euclidean metric of \mathbb{R}^N while $d(\cdot, \cdot)$ is the corresponding distance, i.e.,

$$d(x_1, x_2) = \inf\left\{\int_a^b \sqrt{\langle \dot{\gamma}, \dot{\gamma} \rangle} ds : \gamma \in A_{x_1, x_2}\right\} \quad \text{if } x_1, x_2 \in M_0,$$

where $\gamma \in A_{x_1,x_2}$ if $\gamma : [a,b] \to M_0$ is a piecewise smooth curve joining x_1 to x_2 .

Hence, it can be proved that manifold $H^1(I, M_0)$ can be identified with the set of the absolutely continuous curves $x : I \to \mathbb{R}^N$ with square summable derivative such that $x(I) \subset M_0$. Furthermore, since M_0 is a complete Riemannian manifold with respect to $\langle \cdot, \cdot \rangle$, $H^1(I, M_0)$ equipped with its standard Riemannian structure is a complete Riemannian manifold, too.

Let Z be the smooth manifold of all the $H^1(I, M)$ -curves joining S to Σ while $\Omega^T(P, Q)$ denotes the smooth submanifold of $H^1(I, M_0)$ which contains all the curves joining P to Q in a time T with

$$T_x \Omega^T(P,Q) = \{ \xi \in T_x H^1(I, M_0) : \xi(0) \in T_{x(0)} P, \ \xi(T) \in T_{x(T)} Q \}$$

for all $x \in \Omega^T(P, Q)$. By the product structure of M, it follows

$$Z \equiv \Omega^T(P,Q) \times W^T(t_0,t_1)$$
 and $T_z Z \equiv T_x \Omega^T(P,Q) \times H_0^1$

for each $z = (x, t) \in Z$, as

$$W^T(t_0, t_1) = \{t \in H^1(I, \mathbb{R}) : t(0) = t_0, \ t(T) = t_1\}$$

is a closed affine submanifold of $H^1(I, \mathbb{R})$ with tangent space $T_t W^T(t_0, t_1) = H_0^1$, being $W^T(t_0, t_1) = H_0^1 + j^*$ with

$$j^*: s \in I \mapsto t_0 + s \ \frac{\Delta_t}{T} \in \mathbb{R}, \ H_0^1 = \{t \in H^1(I, \mathbb{R}) : t(0) = t(T) = 0\}.$$

Let us remark that, if P and Q are closed, then submanifold Z of $H^1(I, M)$ can be equipped with the Riemannian structure

$$\langle \zeta, \zeta \rangle_H = \int_0^T \langle D_s \xi, D_s \xi \rangle ds + \int_0^T \dot{\tau}^2 ds$$

for any $z = (x, t) \in Z$, $\zeta = (\xi, \tau) \in T_z Z$ and submanifold $\Omega^T(P, Q)$, hence Z, is complete.

Now, let V = V(z, s) be a given potential on $M \times [0, T^*]$ and consider $T < T^*$. By (1.3) it follows that action integral f_V of problem (1.1), (1.2) becomes

$$f_V(z) = \frac{1}{2} \int_0^T (\langle \dot{x}, \dot{x} \rangle + 2\langle \delta(x), \dot{x} \rangle \dot{t} - \beta(x) \dot{t}^2) ds - \int_0^T V(z, s) \, ds \qquad (2.1)$$

if $z = (x, t) \in Z$; thus, it can be proved that boundary condition (1.2) implies that a curve $z : I \to M$ is a normal trajectory joining S to Σ if and only if $z \in Z$ is a critical point of functional f_V in Z.

As in the problem of geodesic connectedness, a way to get over the lack of boundedness of f_V on Z can be to introduce a new functional which depends only on Riemannian variable x. Clearly, such an approach is allowed if both the metric coefficients and potential V are time-independent.

Proposition 2.1 Assume that potential V satisfies condition (1.7) and consider $z^* = (x^*, t^*) \in Z$. The following statements are equivalent:

- (i) z^* is a critical point of action functional f_V defined in (2.1);
- (ii) x^* is a critical point of functional $J_V : \Omega^T(P,Q) \to \mathbb{R}$ defined in (1.9) and $t^* = \Psi(x^*)$, with $\Psi : \Omega^T(P,Q) \to W^T(t_0,t_1)$ such that

$$\Psi(x)(s) = t_0 + \int_0^s \frac{\langle \delta(x(\sigma)), \dot{x}(\sigma) \rangle}{\beta(x(\sigma))} \, d\sigma - K_t(x) \, \int_0^s \frac{1}{\beta(x(\sigma))} \, d\sigma$$

and $K_t(x)$ defined as in (1.5).

Moreover, for each $x \in \Omega^T(P,Q)$ and $(\xi,\tau) \in T_x\Omega^T(P,Q) \times H^1_0$ it is

$$f_V(x, \Psi(x)) = J_V(x)$$
 and $J'_V(x)[\xi] = f'_V(x, \Psi(x))[(\xi, \tau)].$

So, from now on, assume that potential V satisfies hypothesis (1.7). Hence, by Proposition 2.1 our problem is reduced to study Riemannian functional J_V on $\Omega^T(x_0, x_1)$ and, in order to find at least one of its critical points, the following classical abstract minimum theorem is useful.

Theorem 2.2 Let Ω be a complete Riemannian manifold and F a C^1 functional on Ω which satisfies the Palais–Smale condition, i.e., any $(x_k)_k \subset \Omega$ such that

 $(F(x_k))_k$ is bounded and $\lim_{k \to +\infty} F'(x_k) = 0$

converges in Ω up to subsequences. Then, if F is bounded from below, it attains its infimum.

3 Proof of Theorem 1.2

As already remarked in Section 2, functional J_V in (1.9) is C^1 on Riemannian manifold $\Omega^T(P,Q)$ which is complete if P and Q are closed submanifolds of M_0 . Thus, in order to apply Theorem 2.2, we just need to prove that J_V is bounded from below and satisfies Palais–Smale condition. Or better, it is enough to prove that J_V is bounded from below and coercive in $\Omega^T(P,Q)$, i.e., $J_V(x_k) \to +\infty$ if $||\dot{x}_k|| \to +\infty$ (here, $|| \cdot ||$ is the L^2 –norm). In fact, if J_V is coercive in $\Omega^T(P,Q)$, then a sequence $(x_k)_k$ has to be bounded if $(J_V(x_k))_k$ is bounded, and Palais–Smale condition is a consequence of the following lemma.

Lemma 3.1 If P and Q are two submanifolds of M_0 such that (H_3) holds, then each sequence $(x_k)_k$, bounded in $\Omega^T(P,Q)$ and such that $J'_V(x_k) \to 0$, converges up to subsequences.

Proof. It is enough reasoning as in the proof of [10, Lemma 3.4.1] taking into account some comments in the proof of [6, Proposition 4.2]. ■

Taken any $\epsilon \in [0, 1[$, it is easy to check that functional J_V can be written as

$$J_V(x) = \frac{\epsilon}{2} J^{\epsilon}(x) + (1 - \epsilon) J_T^{\epsilon}(x),$$

where

$$J^{\epsilon}(x) = \int_{0}^{T} \langle \dot{x}, \dot{x} \rangle ds + \int_{0}^{T} \frac{\langle \delta(x), \dot{x} \rangle^{2}}{\beta^{\epsilon}(x)} ds - \left(\Delta_{t}^{\epsilon} - \int_{0}^{T} \frac{\langle \delta(x), \dot{x} \rangle}{\beta^{\epsilon}(x)} ds \right)^{2} \left(\int_{0}^{T} \frac{1}{\beta^{\epsilon}(x)} ds \right)^{-1},$$

with $\beta^{\epsilon}(x) = \epsilon \ \beta(x)$ and $\Delta^{\epsilon}_t = \frac{\Delta_t}{\epsilon}$, and

$$J_T^{\epsilon}(x) = \frac{1}{2} \int_0^T \langle \dot{x}, \dot{x} \rangle ds - \int_0^T V^{\epsilon}(x, s) ds, \quad \text{with } V^{\epsilon}(x, s) = \frac{V(x, s)}{1 - \epsilon}.$$

Then, the following lemmas can be stated.

Lemma 3.2 If (H_2) and (H_3) hold, then for each $\epsilon \in [0, 1[$ functional J^{ϵ} is bounded from below and coercive in $\Omega^T(P,Q)$.

Proof. The proof can be obtained by reasoning as in the proofs of [2, Lemma 2.6] and [6, Proposition 4.1] with some minor changes according to assume P or Q as compact set.

Lemma 3.3 If (H_3) , (H_4^*) and (1.8) hold, then, taken $\epsilon \in [0, 1[$ small enough so that

$$\frac{\lambda}{1-\epsilon}T^2 < \frac{\pi^2}{2}$$

functional J_T^{ϵ} is bounded from below and coercive in $\Omega^T(P,Q)$.

Proof. See [5, Lemma 3.1]. ■

Obviously, in the hypotheses of Theorem 1.2, Lemmas 3.2 and 3.3 imply that functional J_V is bounded from below and coercive in $\Omega^T(P,Q)$; hence, it satisfies Palais–Smale condition (see Lemma 3.1) and Theorem 2.2 applies. So, J_V attains its infimum, and, thus, a solution of the given problem must exist.

Acknowledgments

This work has been supported by M.I.U.R. (research funds ex 40% and 60%).

References

- R. BARTOLO AND A.M. CANDELA, Quadratic Bolza problems in static spacetimes with critical asymptotic behavior, Mediterr. J. Math. 2 (2005) 459-470.
- [2] R. BARTOLO, A.M. CANDELA AND J.L. FLORES, Geodesic connectedness of stationary spacetimes with optimal growth. To appear on J. Geom. Phys.
- [3] R. BARTOLO, A.M. CANDELA AND J.L. FLORES, A quadratic Bolzatype problem in stationary spacetimes with critical growth. Preprint.
- [4] R. BARTOLO, A.M. CANDELA, J.L. FLORES AND M. SÁNCHEZ, Geodesics in static Lorentzian manifolds with critical quadratic behavior, Adv. Nonlinear Stud. 3 (2003) 471-494.
- [5] R. BARTOLO AND A. GERMINARIO, Orthogonal trajectories on Riemannian manifolds and applications to generalized pp-waves. Preprint.
- [6] A.M. CANDELA, Normal geodesics in static spacetimes with critical asymptotic behavior, Nonlinear Anal. TMA 63 (2005) 357-367.

- [7] A.M. CANDELA, J.L. FLORES AND M. SÁNCHEZ, A quadratic Bolzatype problem in a Riemannian manifold, J. Differential Equations 193 (2003) 196-211.
- [8] A.M. CANDELA AND A. SALVATORE, Normal geodesics in stationary Lorentzian manifolds with unbounded coefficients, J. Geom. Phys. 44 (2002) 171-195.
- [9] F. GIANNONI AND A. MASIELLO, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, J. Funct. Anal. 101 (1991) 340-369.
- [10] A. MASIELLO, Variational methods in Lorentzian geometry, Pitman Res. Notes Math. Ser. 309, Longman Sci. Tech., Harlow, 1994.