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Abstract

The aim of this note is to study the existence of normal trajectories
joining two given submanifolds under the action of an external field in
a stationary spacetime. Here, it is assumed that both the growth of the
potential and that one of the coefficients of the metric are critical in a
suitable sense.

1 Introduction

Given a Lorentzian manifold (M, 〈·, ·〉L), a function V ∈ C1(M × [0, T ∗], R)
(T ∗ > 0), two submanifolds S, Σ of M and an arrival time T ∈ ]0, T ∗], the
aim of this note is to use variational tools in order to find accurate conditions
ensuring that S and Σ can be connected by means of normal trajectories under
the action of potential V in time T , i.e., to look for solutions of equation

DL
s ż +∇LV (z, s) = 0 for all s ∈ [0, T ] (1.1)

which satisfy boundary conditions{
z(0) ∈ S, z(T ) ∈ Σ,
ż(0) ∈ Tz(0)S

⊥, ż(T ) ∈ Tz(T )Σ⊥
(1.2)

(here, DL
s denotes the covariant derivative along z induced by the Levi–Civita

connection of metric 〈·, ·〉L, while ∇LV (z, s) is the gradient of V with respect
to z).

As such a problem cannot be solved in general, we limit our interest to a
suitable class of Lorentzian manifolds which is “good” from a variational point
of view.



2 Normal trajectories in stationary spacetimes

Definition 1.1 A Lorentzian manifold (M, 〈·, ·〉L), given by a global splitting
M = M0 × R, is a (standard) stationary spacetime if (M0, 〈·, ·〉) is a finite
dimensional connected Riemannian manifold and its metric is

〈ζ, ζ ′〉L = 〈ξ, ξ′〉+ 〈δ(x), ξ〉τ ′ + 〈δ(x), ξ′〉τ − β(x)ττ ′ (1.3)

for any z = (x, t) ∈ M and ζ = (ξ, τ), ζ ′ = (ξ′, τ ′) ∈ TzM ≡ TxM0 × R, where
δ and β are respectively a smooth vector field and a smooth strictly positive
scalar field on M0.
In particular, M is named (standard) static if δ ≡ 0.

Notice that the study of orthogonal trajectories joining S to Σ under the
action of potential V in a stationary spacetime is interesting not only from
a physical point of view, since these spacetimes represent time–independent
gravitational fields (as, for example, Kerr spacetime) but also from a mathe-
matical one.

In fact, from a variational viewpoint our problem (1.1), (1.2) is equivalent
to find critical points of action functional

fV (z) =
1
2

∫ T

0
〈ż, ż〉Lds−

∫ T

0
V (z, s) ds

on a suitable set of curves (for more details, see Section 2).
Clearly, when V ≡ 0 and S = {z0}, Σ = {z1} (with z0 = (x0, t0),

z1 = (x1, t1) ∈ M), the given problem reduces to the study of geodesic con-
nectedness between z0 and z1 in M and, as geodesics are invariant by affine
reparametrizations, arrival time T between the fixed events is not relevant (in
fact, in most of the related papers it is assumed T = 1). In this case, in pioneer
paper [9] the authors provided a variational principle in order to overcome the
unboundedness of action functional f0, so that looking for geodesics is reduced
to studying critical points of the new functional

J(x) =
∫ T

0
〈ẋ, ẋ〉 ds +

∫ T

0

〈δ(x), ẋ〉2

β(x)
ds − K2

t (x)
∫ T

0

1
β(x)

ds (1.4)

in ΩT (x0, x1), suitable set of curves joining x0 to x1 in a time T , where it is

Kt(x) =
(

∆t −
∫ T

0

〈δ(x), ẋ〉
β(x)

ds

) (∫ T

0

1
β(x)

ds

)−1

, (1.5)

with ∆t = t1 − t0.
According to some recent results in [2], careful estimates of J allow one

to prove that z0 and z1 are geodesically connected in assumptions
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(H1) Riemannian manifold (M0, 〈·, ·〉) is complete and smooth (at least C3),

(H2) there exist µ1, µ2 ≥ 0, k1, k2 ∈ R and a point x̄ ∈ M0 such that for all
x ∈ M0 it is

0 < β(x) ≤ µ1d
2(x, x̄) + k1, (1.6)√

〈δ(x), δ(x)〉 ≤ µ2d(x, x̄) + k2,

(here, d(·, ·) denotes the distance canonically associated to Riemannian metric
〈·, ·〉 on M0).

More in general, if V ≡ 0 but S = P × {t0} and Σ = Q× {t1}, where

(H3) P and Q are two closed submanifolds of M0 such that at least one of
them is compact,

the existence of normal geodesics joining S to Σ has been studied both in
a stationary spacetime, if β is far away from zero and both δ and β have a
sublinear growth (see [8]), and in a static one but in growth condition (1.6)
(see [6]).

On the other hand, if V 6≡ 0 and P = {x0}, Q = {x1}, equation (1.1) has
been studied not only in a Riemannian manifold (see [7]) but also both in a
static and in a stationary one when potential V is time–independent, i.e.,

V (z, s) ≡ V (x, s) for all z = (x, t) ∈ M , s ∈ [0, T ∗] (1.7)

(see [1], respectively [3]). In all these cases if V satisfies assumption

(H4) there exist λ ≥ 0, k ∈ R, x̄ ∈ M0 such that it is

V (x, s) ≤ λd2(x, x̄) + k for all z = (x, t) ∈ M , s ∈ [0, T ∗],

the existence of trajectories, which are solutions of (1.1), is not guaranteed
(in fact, some counterexamples can be found, see Remark 1.4). Anyway, such
solutions exist surely if coefficient λ in (H4) and arrival time T are related by
the further condition

λT 2 <
π2

2
. (1.8)

In the more general setting, i.e., if P and Q are not a singleton but (H3)
holds, some results on a Riemannian manifold M0 have been obtained in [5]
up to assume a little bit stronger condition than (H4):

(H∗
4 ) there exist λ ≥ 0, k ∈ R such that

V (x, s) ≤ λd2(x, A) + k for all z = (x, t) ∈ M , s ∈ [0, T ∗],

with A = P if Q is compact, or A = Q if P is compact, where d(x,A) =
inf
z∈A

d(x, z).



4 Normal trajectories in stationary spacetimes

In this note we consider problem (1.1), (1.2) on a stationary spacetime
when potential V is non–trivial and time–independent.

As previously remarked, a variational formulation entirely based on the
Riemannian part of the spacetime can be stated; more precisely, the given
problem reduces to find critical points of functional

JV (x) =
1
2
J(x)−

∫ T

0
V (x, s) ds (1.9)

on ΩT (P,Q), suitable set of curves joining P to Q in a time T (for the exact
definition, see Section 2),

Thus, the main theorem of this note can be stated as follows.

Theorem 1.2 Let M = M0 × R be a (standard) stationary spacetime which
satisfies hypotheses (H1), (H2) and let V ∈ C1(M × [0, T ∗], R), T ∗ > 0, be a
potential satisfying condition (1.7).
Moreover, let S = P × {t0} and Σ = Q× {t1} be two submanifolds of M with
t0, t1 ∈ R and P , Q two submanifolds of M0 such to satisfy (H3).
So, if potential V and arrival time T ∈ ]0, T ∗] are such that (H∗

4 ) and (1.8)
hold, S and Σ can be joined by at least one normal trajectory which solves
(1.1) and (1.2).

Remark 1.3 If, in addition to the assumptions of Theorem 1.2, P and Q are
both contractible in M0, then a direct application of Ljusternik–Schnirelman
Theory implies some multiplicity results either if M0 is non–contractible in
itself or if it is not (see, e.g., [6]).

Remark 1.4 Even if both P and Q are singleton, counterexamples can be
construct both if hypothesis (H4) with (1.8) fails (see, e.g., [7, Example 3.6])
and if (H2) fails (see [4, Section 7] if β grows more than quadratically or [2,
Example 2.7] if δ grows more than linearly).

2 Variational setting and abstract tools

Let (M, 〈·, ·〉L) be a stationary spacetime with M = M0 × R and 〈·, ·〉L as
in (1.3), where (M0, 〈·, ·〉) is a Riemannian manifold such that (H1) holds.
Moreover, let P and Q be two submanifolds of M0 and fix t0, t1 ∈ R, so that
it is S = P × {t0} and Σ = Q× {t1}. Now, fixed T > 0, for simplicity assume
I = [0, T ].

As we want to work by means of variational tools, let us recall some basic
definitions (for more details, see, e.g., [10]).
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By Nash Embedding Theorem we can assume that M0 is a submanifold
of an Euclidean space RN and 〈·, ·〉 is the restriction to M0 of the Euclidean
metric of RN while d(·, ·) is the corresponding distance, i.e.,

d(x1, x2) = inf
{∫ b

a

√
〈γ̇, γ̇〉ds : γ ∈ Ax1,x2

}
if x1, x2 ∈ M0,

where γ ∈ Ax1,x2 if γ : [a, b] → M0 is a piecewise smooth curve joining x1 to
x2.

Hence, it can be proved that manifold H1(I,M0) can be identified with
the set of the absolutely continuous curves x : I → RN with square summable
derivative such that x(I) ⊂ M0. Furthermore, since M0 is a complete Rie-
mannian manifold with respect to 〈·, ·〉, H1(I, M0) equipped with its standard
Riemannian structure is a complete Riemannian manifold, too.

Let Z be the smooth manifold of all the H1(I, M)–curves joining S to Σ
while ΩT (P,Q) denotes the smooth submanifold of H1(I,M0) which contains
all the curves joining P to Q in a time T with

TxΩT (P,Q) = {ξ ∈ TxH1(I,M0) : ξ(0) ∈ Tx(0)P, ξ(T ) ∈ Tx(T )Q}

for all x ∈ ΩT (P,Q). By the product structure of M , it follows

Z ≡ ΩT (P,Q)×W T (t0, t1) and TzZ ≡ TxΩT (P,Q)×H1
0

for each z = (x, t) ∈ Z, as

W T (t0, t1) = {t ∈ H1(I, R) : t(0) = t0, t(T ) = t1}

is a closed affine submanifold of H1(I, R) with tangent space TtW
T (t0, t1) =

H1
0 , being W T (t0, t1) = H1

0 + j∗ with

j∗ : s ∈ I 7→ t0 + s
∆t

T
∈ R, H1

0 = {t ∈ H1(I, R) : t(0) = t(T ) = 0}.

Let us remark that, if P and Q are closed, then submanifold Z of H1(I, M)
can be equipped with the Riemannian structure

〈ζ, ζ〉H =
∫ T

0
〈Dsξ,Dsξ〉ds +

∫ T

0
τ̇2ds

for any z = (x, t) ∈ Z, ζ = (ξ, τ) ∈ TzZ and submanifold ΩT (P,Q), hence Z,
is complete.
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Now, let V = V (z, s) be a given potential on M × [0, T ∗] and consider
T < T ∗. By (1.3) it follows that action integral fV of problem (1.1), (1.2)
becomes

fV (z) =
1
2

∫ T

0
(〈ẋ, ẋ〉+ 2〈δ(x), ẋ〉ṫ− β(x)ṫ2)ds−

∫ T

0
V (z, s) ds (2.1)

if z = (x, t) ∈ Z; thus, it can be proved that boundary condition (1.2) implies
that a curve z : I → M is a normal trajectory joining S to Σ if and only if
z ∈ Z is a critical point of functional fV in Z.

As in the problem of geodesic connectedness, a way to get over the lack of
boundedness of fV on Z can be to introduce a new functional which depends
only on Riemannian variable x. Clearly, such an approach is allowed if both
the metric coefficients and potential V are time–independent.

Proposition 2.1 Assume that potential V satisfies condition (1.7) and con-
sider z∗ = (x∗, t∗) ∈ Z. The following statements are equivalent:

(i) z∗ is a critical point of action functional fV defined in (2.1);

(ii) x∗ is a critical point of functional JV : ΩT (P,Q) → R defined in (1.9)
and t∗ = Ψ(x∗), with Ψ : ΩT (P,Q) → W T (t0, t1) such that

Ψ(x)(s) = t0 +
∫ s

0

〈δ(x(σ)), ẋ(σ)〉
β(x(σ))

dσ −Kt(x)
∫ s

0

1
β(x(σ))

dσ

and Kt(x) defined as in (1.5).

Moreover, for each x ∈ ΩT (P,Q) and (ξ, τ) ∈ TxΩT (P,Q)×H1
0 it is

fV (x, Ψ(x)) = JV (x) and J ′V (x)[ξ] = f ′V (x,Ψ(x))[(ξ, τ)].

So, from now on, assume that potential V satisfies hypothesis (1.7). Hence,
by Proposition 2.1 our problem is reduced to study Riemannian functional JV

on ΩT (x0, x1) and, in order to find at least one of its critical points, the fol-
lowing classical abstract minimum theorem is useful.

Theorem 2.2 Let Ω be a complete Riemannian manifold and F a C1 func-
tional on Ω which satisfies the Palais–Smale condition, i.e., any (xk)k ⊂ Ω
such that

(F (xk))k is bounded and lim
k→+∞

F ′(xk) = 0

converges in Ω up to subsequences. Then, if F is bounded from below, it attains
its infimum.
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3 Proof of Theorem 1.2

As already remarked in Section 2, functional JV in (1.9) is C1 on Riemannian
manifold ΩT (P,Q) which is complete if P and Q are closed submanifolds of
M0. Thus, in order to apply Theorem 2.2, we just need to prove that JV

is bounded from below and satisfies Palais–Smale condition. Or better, it is
enough to prove that JV is bounded from below and coercive in ΩT (P,Q), i.e.,
JV (xk) → +∞ if ‖ẋk‖ → +∞ (here, ‖ · ‖ is the L2–norm). In fact, if JV is
coercive in ΩT (P,Q), then a sequence (xk)k has to be bounded if (JV (xk))k is
bounded, and Palais–Smale condition is a consequence of the following lemma.

Lemma 3.1 If P and Q are two submanifolds of M0 such that (H3) holds,
then each sequence (xk)k, bounded in ΩT (P,Q) and such that J ′V (xk) → 0,
converges up to subsequences.

Proof. It is enough reasoning as in the proof of [10, Lemma 3.4.1] taking into
account some comments in the proof of [6, Proposition 4.2].

Taken any ε ∈ ]0, 1[, it is easy to check that functional JV can be written
as

JV (x) =
ε

2
J ε(x) + (1− ε)J ε

T (x),

where

J ε(x) =
∫ T

0
〈ẋ, ẋ〉ds +

∫ T

0

〈δ(x), ẋ〉2

βε(x)
ds

−
(

∆ε
t −

∫ T

0

〈δ(x), ẋ〉
βε(x)

ds

)2 (∫ T

0

1
βε(x)

ds

)−1

,

with βε(x) = ε β(x) and ∆ε
t = ∆t

ε , and

J ε
T (x) =

1
2

∫ T

0
〈ẋ, ẋ〉ds−

∫ T

0
V ε(x, s)ds, with V ε(x, s) =

V (x, s)
1− ε

.

Then, the following lemmas can be stated.

Lemma 3.2 If (H2) and (H3) hold, then for each ε ∈ ]0, 1[ functional J ε is
bounded from below and coercive in ΩT (P,Q).

Proof. The proof can be obtained by reasoning as in the proofs of [2, Lemma
2.6] and [6, Proposition 4.1] with some minor changes according to assume P
or Q as compact set.
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Lemma 3.3 If (H3), (H∗
4 ) and (1.8) hold, then, taken ε ∈ ]0, 1[ small enough

so that
λ

1− ε
T 2 <

π2

2
,

functional J ε
T is bounded from below and coercive in ΩT (P,Q).

Proof. See [5, Lemma 3.1].

Obviously, in the hypotheses of Theorem 1.2, Lemmas 3.2 and 3.3 imply
that functional JV is bounded from below and coercive in ΩT (P,Q); hence,
it satisfies Palais–Smale condition (see Lemma 3.1) and Theorem 2.2 applies.
So, JV attains its infimum, and, thus, a solution of the given problem must
exist.
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