The lightlike dimensional reduction of the inhomogeneous massless little group into the Galilei group

Ettore Minguzzi, Florence University

Talk based on results by the author and on previous results by Eisenarth, Lichnerowicz,
Bargmann, Levy-Leblond, Duval, Burdet, Künzle, Perrin, Gibbons and Horváthy.

The Galilean group and the transformation of shadows in special relativity, gr-qc/0510063

Shadows from a distance source Σ

- Our aim is to study the shadows of a monochromatic source of light Σ that emits photons of momentum $p^{\mu}=\omega n^{\mu}, n^{\mu}=(1,0,0,1)$.

- How does it changes under frame boosts that preserve the direction of p ?

The Poincaré group

The Poincare group is ($\eta_{00}=-1, \mu=0, \ldots, d+1$)

$$
\begin{aligned}
{\left[J^{\alpha \beta}, J^{\gamma \delta}\right] } & =\eta^{\alpha \delta} J^{\beta \gamma}+\eta^{\beta \gamma} J^{\alpha \delta}-\eta^{\alpha \gamma} J^{\beta \delta}-\eta^{\beta \delta} J^{\alpha \gamma} \\
{\left[P^{\alpha}, J^{\beta \gamma}\right] } & =\eta^{\alpha \beta} P^{\gamma}-\eta^{\alpha \gamma} P^{\beta}
\end{aligned}
$$

defining $(a=1, \ldots, d)$

$$
W_{a}=J^{0 a}-J^{d+1 a}=-n_{\mu} J^{\mu a}
$$

we obtain that generators $J_{a b}, W_{a}$ generate a $\mathcal{I S O}(d)$ subalgebra

$$
\begin{aligned}
{\left[J_{a b}, J_{c d}\right] } & =\delta_{a d} J_{b c}+\delta_{b d} J_{a d}-\delta_{a c} J_{b d}-\delta_{b d} J_{a c} \\
{\left[W_{a}, J_{b c}\right] } & =\delta_{a b} W_{c}-\delta_{a c} W_{b}
\end{aligned}
$$

The Little group

The infinitesimal Lorentz transformation $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$ with

$$
\Lambda_{\beta}^{\alpha}=\left(I+\frac{1}{2} \Omega_{\mu \nu} J^{\mu \nu}\right)_{\beta}^{\alpha}
$$

leads to the Lie algebra representation $\left(J^{\mu \nu}\right)_{\beta}^{\alpha}=\eta^{\mu \alpha} \delta_{\beta}^{\nu}-\eta^{\nu \alpha} \delta_{\beta}^{\mu}$, it follows

$$
\begin{aligned}
\left(J_{a b}\right)_{\beta}^{\alpha} & =\delta_{a}^{\alpha} \delta_{b \beta}-\delta_{\alpha}^{b} \delta_{a \beta} \\
\left(W_{a}\right)_{\beta}^{\alpha} & =\eta^{a \alpha} n_{\beta}-n^{\alpha} \delta_{\beta}^{a}
\end{aligned}
$$

and

$$
\left(J_{a b}\right)_{\beta}^{\alpha} n^{\beta}=\left(W_{a}\right)_{\beta}^{\alpha} n^{\beta}=0
$$

thus the generators $J_{a b}, W_{a}$ leave n^{μ} invariant: they generate the little group $L\left(e_{d+1}\right)$. The generators W_{a} are often called the translational generators. On the contrary we shall see that they generate Galilean boosts.

The Little group II

The Little group transformation $x^{\prime \mu}=L_{\nu}^{\mu} x^{\nu}$ takes the form

$$
L_{\nu}^{\mu}=\left(\begin{array}{ccc}
1+\zeta & -\alpha^{c} \mathrm{R}_{c b} & -\zeta \\
-\alpha^{a} & \mathrm{R}_{b}^{a} & \alpha^{a} \\
\zeta & -\alpha^{c} \mathrm{R}_{c b} & 1-\zeta
\end{array}\right)
$$

with $\zeta=\alpha^{a} \alpha_{a} / 2$. The infinitesimal transformation is

$$
I+\frac{1}{2} \Omega_{a b} J^{a b}+\alpha^{a} W_{a}
$$

It means that $\Omega_{0 a}=-\Omega_{d+1 a}=\alpha_{a}, \Omega_{0 d+1}=0$, or in order to keep the null momentum $p=\omega n$ invariant the frames must rotate and accelerate in such a way that the (i) acceleration along e_{d+1} vanishes (ii) the acceleration and the angular velocity perpendicular to e_{d+1} must be equal in magnitude and perpendicular to each other.

The inhomogeneous Little group

Let us define

$$
\mathcal{M}=P^{\mu} n_{\mu}=P^{d+1}-P^{0}
$$

and $H=P^{0}$ then the generators $\mathcal{M}, H, P^{a}, W_{a}$ and $J_{a b}$ span a Lie algebra whose infinitesimal Poincaré transformations leave n^{μ} invariant and include the translations

$$
\begin{aligned}
{\left[J_{a b}, J_{c d}\right] } & =\delta_{a d} J_{b c}+\delta_{b d} J_{a d}-\delta_{a c} J_{b d}-\delta_{b d} J_{a c} \\
{\left[W_{a}, J_{b c}\right] } & =\delta_{a b} W_{c}-\delta_{a c} W_{b} \\
{\left[P_{a}, J_{b c}\right] } & =\delta_{a b} P_{c}-\delta_{a c} P_{b} \\
{\left[W_{a}, H\right] } & =P_{a} \\
{\left[W_{a}, P_{b}\right] } & =\delta_{a b} \mathcal{M}
\end{aligned}
$$

\mathcal{M} generates translations along n^{μ}. The infinitesimal transformation of $x^{\prime \mu}=L_{\nu}^{\mu} x^{\nu}-a^{\mu}$ is

$$
I+\frac{1}{2} \Omega_{a b} J^{a b}+\alpha^{a} W_{a}-a^{b} P_{b}+\left(a^{0}-a^{d+1}\right) H+a^{d+1} \mathcal{M}
$$

The Galilean group

The shadow mass generator \mathcal{M} spans an ideal I and $N=\exp I$ is a normal subgroup. Moreover \mathcal{M} belongs to the center of $\mathcal{I} \mathcal{L}\left(\mathbf{e}_{d+1}\right)$. The quotient group $I L(n) / N$ is isomorphic to the Galilean group $G a l(d)$ in $\mathrm{d}+1$ spacetime dimensions. We have the Lie algebra central extension

$$
0 \rightarrow\{\mathcal{M}\} \rightarrow \mathcal{I} \mathcal{L}\left(\mathbf{e}_{d+1}\right) \rightarrow \mathcal{G} a l(d) \rightarrow 0
$$

Thus the inhomogeneous Little group is a particular central extension of the Galilean group

$$
1 \rightarrow N\left(\sim T_{1}\right) \rightarrow I L\left(\mathbf{e}_{d+1}\right) \rightarrow \operatorname{Gal}(d) \rightarrow 1
$$

To the same Lie algebra central extension there corresponds another central extension

$$
1 \rightarrow U(1) \rightarrow B\left(\mathbf{e}_{d+1}\right) \rightarrow G a l(d) \rightarrow 1
$$

$B\left(\mathbf{e}_{d+1}\right)$ is the Bargmann group. It is useful in quantum mechanics.

The fiber bundle with null fibration $M \rightarrow Q$

The Galilean group $\operatorname{Gal}((d) \sim I L / N$ acts unambiguously on the $\mathrm{d}+1$ quotient spacetime $Q=M / N$ made of 'events' $N x$. Thus the events of Q are the light rays of direction n.

The Bargmann bundle is obtained identifying points x and x^{\prime} such that $x^{\prime}-x=2 \pi k$, $k \in \mathbb{N}$. The structure group is the Bargmann group.

The relation with shadows

An event x has a shadow on each screen perpendicular to the direction of light. Each shadow is a representant of the point on Q, $N x$. Let t be the hitting time, x^{a} the hitting point ($x^{0}=t+x^{d+1}$) then x^{μ} admits the unique decomposition

$$
x^{\mu}=\left(\begin{array}{c}
x^{d+1}+t \\
x^{a} \\
x^{d+1}
\end{array}\right)=x^{d+1} n^{\mu}+\left(\begin{array}{c}
t \\
x^{a} \\
0
\end{array}\right)
$$

The transformation of shadows

If $x^{\prime \mu}=L_{\nu}^{\mu} x^{\nu}-a^{\mu}$ (inhomogeneous Little group transformation) then

$$
x^{\prime \mu}=\left(\begin{array}{c}
x^{\prime d+1}+t^{\prime} \\
\mathbf{x}^{\prime} \\
x^{\prime d+1}
\end{array}\right)=x^{\prime^{d+1}} n^{\mu}+\left(\begin{array}{c}
t^{\prime} \\
\mathbf{x}^{\prime} \\
0
\end{array}\right)
$$

with

$$
x^{\prime d+1}=x^{d+1}+t \zeta-\alpha^{a} \mathrm{R}_{a b} x^{b}-a^{d+1}
$$

and (Galilei transformation)

$$
\begin{aligned}
t^{\prime} & =t-\left(a^{0}-a^{d+1}\right) \\
x^{\prime b} & =\mathrm{R}_{c}^{b} x^{c}-t \alpha^{b}-a^{b}
\end{aligned}
$$

Recall

$$
I+\frac{1}{2} \Omega_{a b} J^{a b}+\alpha^{a} W_{a}-a^{b} P_{b}+\left(a^{0}-a^{d+1}\right) H+a^{d+1} \mathcal{M}
$$

The transformation of shadows

- The light spot of a beam of light or the dark spot of a screened beam of light transform, changing inertial frame, with a Galilean transformation.
- Since the shadows are made by dark spots their points transform with a Galilean transformation, hence the shadow have the same shape (but different velocity) in all perpendicular to light screens.
- The transformation of hitting time t implies an absolute (Galilean) simultaneity: if two light beams hit a perpendicular-to-light screen at the same time then they hit all perpendicular-to-light screens at the same time.

The shadow of a pointlike relativistic particle...

In the coordinates x^{d+1}, t and x^{a} the Minkowski metric reads

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}-2 \mathrm{~d} t \mathrm{~d} x^{d+1}+\mathrm{d} x^{a} \mathrm{~d} x_{a}
$$

Hamilton's principle in configuration space

$$
0=\delta \int m \mathrm{~d} \tau=\delta \int_{t_{0}}^{t_{1}} \mathcal{L} \mathrm{~d} t=\delta \int_{t_{0}}^{t_{1}} m \sqrt{2 \dot{x}^{d+1}+1-\dot{\mathbf{x}}^{2}} \mathrm{~d} t
$$

In the presence of more particles the total Lagrangian \mathcal{L} is the sum of Lagrangians $\mathcal{L}_{(i)}$. The cyclic variables $x_{(i)}^{d+1}$ can be removed using Routh's reduction. The conserved conjugated momenta (shadow mass) are

$$
\mu_{(i)}=p_{(i)}^{0}-p_{(i)}^{d+1}
$$

The reduced variational principle is $\delta \int_{t_{0}}^{t_{1}} R \mathrm{~d} t=0$, where the Routhian R is given by

$$
R\left(\mathbf{x}_{(i)}, \dot{\mathbf{x}}_{(i)}\right)=\sum_{(i)}\left[\mu_{(i)} \dot{x}_{(i)}^{d+1}-\mathcal{L}_{(i)}\right]=\sum_{(i)}\left[T_{(i)}-V_{(i)}\right]
$$

... behaves as a classical non-relativistic particle

The shadow kinetic and internal energy are

$$
\begin{aligned}
T & =\frac{\mu}{2} \dot{\mathbf{x}}^{2}=\frac{p^{a} p_{a}}{2\left(p^{0}-p^{d+1}\right)}, \\
V & =\frac{1}{2}\left[\frac{m^{2}}{\mu}+\mu\right]=\frac{1}{2}\left[\frac{m^{2}}{p^{0}-p^{d+1}}+p^{0}-p^{d+1}\right] \\
E & =T+V=\frac{\mu}{2} \dot{\mathbf{x}}^{2}+\frac{1}{2}\left[\frac{m^{2}}{\mu}+\mu\right]=p^{0}
\end{aligned}
$$

One expects the shadow worldline to behave as a classical particle of (shadow) mass μ. Let us verify this fact in the shadow of a relativistic collision.

$$
\sum_{(i)}^{N} p_{(i)}^{\mu}=\sum_{(i)}^{\bar{N}} \bar{p}_{(i)}^{\mu}
$$

Conservation principles

The particle worldlines are geodesics that project into geodesics of Q : the shadow worldlines. We obtain

$$
\sum_{(i)}^{N} \mu_{(i)}=\sum_{(i)}^{\bar{N}} \bar{\mu}_{(i)}
$$

that is, the total shadow mass is conserved in the shadow collision.

$$
\sum_{(i)}^{N} \mu_{(i)} \dot{\mathbf{x}}_{(i)}=\sum_{(i)}^{\bar{N}} \bar{\mu}_{(i)} \dot{\overline{\mathbf{x}}}_{(i)}
$$

that is, the shadow momentum is conserved. Finally

$$
\sum_{(i)}^{N} E_{(i)}=\sum_{(i)}^{\bar{N}} \bar{E}_{(i)}
$$

the shadow energy is conserved.

Conservation of kinetic energy

The total kinetic energy in conserved

$$
\sum_{(i)}^{N} \frac{\mu_{(i)}}{2} \dot{\mathbf{x}}_{(i)}^{2}=\sum_{(i)}^{N} \frac{\mu_{(i)}}{2} \dot{\mathbf{x}}_{(i)}^{2}
$$

if the total internal energy is conserved.

- The shadow of an elastic relativistic collision is an elastic classical collision provided the shadow masses are preserved in the collision, $\mu_{(i)}=\bar{\mu}_{(i)},(i)=1, \ldots, N$.
- The shadow of a collision that involves only massless particles is a classical elastic collision.

The inverse problem

Assume the conservation of total mass, momentum and kinetic energy on Q
$\sum_{(i)}^{N} \mu_{(i)}=\sum_{(i)}^{\bar{N}} \bar{\mu}_{(i)} ; \quad \sum_{(i)}^{N} \mu_{(i)} \dot{\mathbf{x}}_{(i)}=\sum_{(i)}^{\bar{N}} \bar{\mu}_{(i)} \dot{\mathbf{x}}_{(i)} ; \quad \sum_{(i)}^{N} \frac{1}{2} \mu_{(i)} \dot{\mathbf{x}}_{(i)}^{2}=\sum_{(i)}^{\bar{N}} \frac{1}{2} \bar{\mu}_{(i)} \dot{\mathbf{x}}_{(i)}^{2}$
we want to construct a Galilei invariant lift of the collision to M. Set $m=\alpha \mu$.

Lightlike 0 -lift. The elastic collision on Q can be regarded as the shadow of a collision on M in which only massless particles of momentum

$$
p_{(i)}^{\mu}=\frac{\mu_{(i)}}{2}\left(\begin{array}{c}
\dot{\mathbf{x}}^{2}+1 \\
2 \dot{\mathbf{x}} \\
\dot{\mathbf{x}}^{2}-1
\end{array}\right)_{(i)}
$$

$$
p_{(i)}^{\mu}=\frac{\mu_{(i)}}{2}\left(\begin{array}{c}
\dot{\mathbf{x}}^{2}+2 \\
2 \dot{\mathbf{x}} \\
\dot{\mathbf{x}}^{2}
\end{array}\right)_{(i)}
$$

for which the shadow mass coincide with mass.

Conclusions

- The relation of the inhomogeneous Little group and the Galilean group has been studied in detail.
- An application has been found in the transformation of shadows between screens perpendicular to the direction of light and at rest in different inertial frames.
- The shadow of a relativistic particle has been proved to behave as a classical particle with a suitable shadow mass, as could have been expected from the fact that the Galilean invariance in the reduced space is inherited from the original Poincaré invariance.
- The projection of a relativistic collision and the inverse process of lifting a shadow have been investigated.

