A new development of the GKP construction

José L. Flores

Castelldefels, November 2005

BOUNDARIES OF SPACETIMES

• Interest:

÷

- Singularity Theory.
- Asymptotic properties of fields and gravitation.

- Quantum aspects of gravity.
- Many different boundaries in Relativity:

Conformal boundary, g-boundary, b-boundary, Meyer's construction, a-boundary, isocausal boundary...*causal boundary*.

CAUSAL BOUNDARY

• Motivation: Find a "systematic" and "intrinsic" procedure to obtain a "natural" and "unique" boundary for "general" spacetimes.

• Guide Properties:

- (1) Any inextensible causal curve must have some limit in the boundary.
- (2) Boundary exclusively based on the global causal structure of the spacetime.
- (3) Extendibility of the causality and topology of the spacetime to the attached boundary.

THE GKP APPROACH '72

- Definition of Future Causal Boundary $\partial^+(V)$:
- (i) Attach a *future ideal point* to every inextensible \uparrow -timelike curve γ ,
- (ii) two different curves $\gamma \neq \gamma'$ are attached the same ideal point iff they have the same past $I^{-}[\gamma] = I^{-}[\gamma']$.

Then,

 $\partial^+(V) :=$ set of all future ideal points.

• Definition of Future Causal Completion V^+ :

 $V^+ := V \cup \partial^+(V)$ = {real points} \cup {future ideal points}.

- Equivalent re-formulation of the Future Causal Boundary:
 - Past set: $P \subset V$ such that $I^{-}[P] = P$.
 - Indecomposable past set (IP): past set P which cannot be expressed as union of two proper past sets.
 - Proper IP (PIP): IP P such that $P = I^{-}(p)$.
 - Terminal IP (TIP): IP P such that $P \neq I^{-}(p)$ for any $p \in V$.

Then, we have the following identifications: $V \equiv \text{PIPs}, \quad \partial^+(V) \equiv \text{TIPs},$ $V^+ := V \cup \partial^+(V)$ $\equiv \text{PIPs} \cup \text{TIPs} = \text{IPs}.$ • The dual notions of previous definitions are introduced analogously: *past ideal point, fu-ture set, IF, PIF, TIF.*

• This provides the following constructions for the past:

- Past Causal Boundary $\partial^{-}(V)$; $\partial^{-}(V) := \text{set of all past ideal points}$ $\equiv \text{TIFs.}$

- Past Causal Completion V^- ;

 $V^{-} := V \cup \partial^{-}(V)$ = {real points} \cup {past ideal points} \equiv PIFs \cup TIFs = IFs.

EXTENDED CAUSAL RELATIONS

• Causal Relations for the Future Causal Completion:

- Causal relation: $P \prec P'$ iff $P \subset P'$.
- Chronological relation: $P \ll P'$ iff there exists $r \in P'$ such that $P \subset I^-(r)$.

• Causal Relations for the Past Causal Completion:

- Causal relation: $F \prec F'$ iff $F' \subset F$.
- Chronological relation: $F \ll F'$ iff there exists $r \in F$ such that $F' \subset I^+(r)$.

Remark: May include additional \ll relations.

(TOTAL) CAUSAL BOUNDARY

• Naive approach: a priori, the most natural definition for the total causal boundary is

$$\partial(V) := \partial^+(V) \cup \partial^-(V).$$

• Problem: this definition DOES NOT WORK in general! Some NON-TRIVIAL identifications may be needed!

• First, they construct a pre-completion V^{\ddagger} where obvious identifications between PIPs and PIFs are established:

 $V^{\sharp} := V^{+} \cup V^{-} / \sim$

where $I^{-}(p) \sim I^{+}(p)$ for all $p \in V$.

IDENTIFICATIONS AND TOPOLOGY

• Alexandrov Topology on V: subbase formed by $I^{-}(p)$, $I^{+}(p)$, $V \setminus \overline{I^{-}(p)}$, $V \setminus \overline{I^{+}(p)}$.

• Generalized Alexandrov Topology on V^{\sharp} : subbase formed by

$$F^{int} := \{P \in V^+ : P \cap F \neq \emptyset\}$$

$$F^{ext} := \{P \in V^+ : P = I^-[S] \Rightarrow I^+[S] \not\subset F\}$$

$$P^{int} := \{F \in V^- : P \cap F \neq \emptyset\}$$

$$P^{ext} := \{F \in V^- : F = I^+[S] \Rightarrow I^-[S] \not\subset P\}.$$

• Definition: The *GKP causal completion* is the quotient space

$$\begin{split} \overline{V} &:= V^{\sharp} / \sim_h \\ \sim_h &:= \text{minimum equivalence relation } \sim \\ & \text{such that } V^{\sharp} / \sim \text{ is Hausdorff.} \end{split}$$

• Definition: The GKP causal boundary is $\partial(V) := \overline{V} \setminus V.$ • Benefits: "Intrinsic" and "systematic" procedure. Provides an "unique" and "general" boundary.

- Objections:
 - The singularity of Taub spacetime $ds^2 = z^{-1/2}(dt^2 dz^2) z(dx^2 + dy^2), \ z > 0$ becomes an unique point! [KLL'86].
 - The causal structure of the (total) boundary is not analyzed.
 - The topology for the completion of Minkowski does not coincide with that derived from the embedding into ESU [H'00].
 - This method actually needs *stably causal* spacetimes [S'88].

• Causes:

- The treatment of past and future boundaries separately is an artificial procedure.
- Hausdorffness condition seems to be incompatible with the causal boundary approach.

OTHER DEVELOPMENTS OF THE GKP APPROACH

BUDIC-SACHS '74:

* Identifications directly defined on $V^+ \cup V^-$: $P \sim_{bs} F$ iff $P = \downarrow F$ or $F = \uparrow P$.

* A new extended causal structure is defined:

$$P \prec P' \quad \text{iff} \quad P \subset P' \\P \ll P' \quad \text{iff} \quad P' \cap (\uparrow P) \neq \emptyset \\P \prec F \quad \text{iff} \quad \exists \ \hat{L}, \ \check{L} \quad s.t. \quad P \subset \hat{L}, \ F \subset \check{L} \\P \ll F \quad \text{iff} \quad (\downarrow F) \cap (\uparrow P) \neq \emptyset \\\vdots$$

* New generalized Alexandrov topology, now defined directly on \overline{V} : subbase formed by $I^+(p), I^-(p), \overline{V} \setminus J^-(p), \overline{V} \setminus J^+(p)$.

• Benefits:

Satisfactory extension of \ll to \overline{V} without additional \ll relations on V.

Satisfactory extension of \prec to \overline{V} without additional \prec relations on V iff V is *causally simple*.

If V is causally continuous, the resulting quotient topology is Hausdorff and V becomes topologically and densely embedded into \overline{V} .

• Objections:

Very restrictive construction. Only applicable to causally continuous spacetimes.

Bad topological behaviors in some examples [KL'88].

RACZ '87:

* Generalized Alexandrov topology defined on $V^+ \cup V^-$: subbase formed by F^{int} , F^{ext} , P^{int} , P^{ext} , with

$$F^{int} := \{A \in V^+ \cup V^- : A \in V^+, A \cap F \neq \emptyset \text{ or } A \in V^-, I^+[S] = A \Rightarrow I^-[S] \cap F \neq \emptyset \}$$

$$F^{ext} := \{A \in V^+ \cup V^- : A \in V^-, A \not\subset F \text{ or} \\ A \in V^+, I^-[S] = A \Rightarrow I^+[S] \not\subset F\}.$$

- * Consider the minimum set of identifications \sim_r which ensures $I^-(p) \sim_r I^+(p)$.
- \star Under certain technical conditions on V the resulting quotient topology is Hausdorff.
- * Provide specific construction for *stably causal* spacetimes.

• Benefits:

Reproduce the 1-dimensional character of the singularity region of Taub spacetime.

• Objections:

Essentially the same as the GKP approach.

Bad topological behaviors in some examples [KL'92].

SZABADOS '88 '89

* Identifications \sim_s directly defined on V^{\sharp} :

 $P \sim_s F \text{ iff } \left\{ \begin{array}{l} P \text{ maximal IP into } \downarrow F \\ F \text{ maximal IF into } \uparrow P \end{array} \right.$

Other relations $P \sim_s P'$, $F \sim_s F'$ are also introduced.

- * Chronological relation: $m \ll m'$ iff for some $F_{\alpha} \in \pi^{-1}(m)$ and some $P'_{\mu} \in \pi^{-1}(m')$, it is $F_{\alpha} \cap P'_{\mu} \neq \emptyset$.
- * Causal relation: $m \prec m'$ iff $I^+(m) \supset I^+(m')$ and $I^-(m) \subset I^-(m')$.
- * They take the quotient of the GKP generalized Alexandrov topology on V^{\sharp} .

• Benefits:

Overcome most of the troubles of the GKP approach.

The resulting topology is Hausdorff.

• Objections:

Appear spurious \ll relations inherent to the Szabados identification rule [MR'03].

Bad topological limits in concrete examples are shown in [KL'92], [MR'03].

MAROLF-ROSS '03

* Relation \sim_s is used to form pairs, instead of establishing identifications between indecomposable sets:

$$(P,F) \in \overline{V} \text{ iff } \begin{cases} P \sim_s F \\ P = \emptyset, \ F \not\sim_s P' \ \forall P' \in V^+ \\ F = \emptyset, \ P \not\sim_s F' \ \forall F' \in V^-. \end{cases}$$

 They essentially adopt the Szabados' chronology:

 $(P,F) \ll (P',F')$ iff $F \cap P' \neq \emptyset$.

* Rather technical topology: defined by imposing $\overline{V} \setminus L^{\pm}(\overline{S})$, $\overline{S} \subset \overline{V}$ to be open, with L^{\pm} operators entirely based on the chronology of V.

• Benefits:

This chronology does not introduce spurious relations.

Topology with many satisfactory properties: V becomes topologically embedded into \overline{V} , the boundary $\partial(V)$ is closed in \overline{V} ...

• Objections:

Topology with too many convergent sequences. Bad separation properties: it is not T_1 !

Another alternative topology suggested by Marolf-Ross behaves even worse! THE CHRONOLOGICAL BOUNDARY

- Guide Properties:
- (1) Any inextensible timelike curve must have some limit in the boundary.
- (2) Boundary exclusively based on the "global" chronological structure of the spacetime.
- (3) Extendibility of the chronology and topology of the spacetime to the attached boundary.

• From (2), this construction is only applicable to (past/future) distinguishing spacetimes.

CONSTRUCTION

* Idea: The completion \overline{V} will be formed by all "endpoints" of chains (timelike curves) in V.

• Definition: A pair $(P, F) \in V_p \times V_f$ is said generated by a chain (timelike curve) $\delta \subset V$ if its components are the "limits" of the pasts and the futures of the points of δ ; that is

$$P = I^{-}(LI(\{I^{-}(p_n)\}))$$

$$F = I^{+}(LI(\{I^{+}(p_n)\})), \quad \delta = \{p_n\},$$

where $LI(A_n) := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$.

• Definition: A pair $(P, F) \in V_p \times V_f$ is said elemental if there is no another pair (P', F')generated by some chain such that

 $\operatorname{dec}(P') \subset \operatorname{dec}(P), \quad \operatorname{dec}(F') \subset \operatorname{dec}(F),$ where

 $dec(P) := \{P_{\alpha}\}, P_{\alpha} \text{ maximal IP inside } P, \\ dec(F) := \{F_{\alpha}\}, F_{\alpha} \text{ maximal IF inside } F.$

• Definition: An elemental pair $(P, F) \in V_p \times V_f$ is the *endpoint* of a chain $\delta \subset V$ if it is generated by δ .

• Definition: The chronological completion \overline{V} is the set of endpoints of all chains in V:

 $\overline{V} :=$ set of all endpoints.

• Definition: The chronological boundary $\partial(V)$ is then

 $\partial(V) := \overline{V} \setminus V.$

Properties:

-There exist chains "without" endpoints.

-The endpoint of a chain, if exists, is "unique". It is preserved by subsequences.

-The unique pair in \overline{V} with some component equal to $I^-(p)$ or $I^+(p)$ is $(I^-(p), I^+(p))$.

CHRONOLOGY

- Definition: $(P, F) \ll (P', F')$ iff $F \cap P' \neq \emptyset$.
- Properties:
 - No spurious \ll relations are introduced in V.
 - V is chronologically dense in \overline{V} .
 - $I^{-}((P,F)) \cap V = P$, $I^{+}((P,F)) \cap V = F$.

* Our completion is applicable to more general objects than that of spacetime: the *chronolog-ical sets*.

- Theorem: Completing the completion gives nothing new: $\overline{\overline{V}} \cong \overline{V}$.
- Theorem: \overline{V} is universal in a categorical sense.

CHRONOLOGICAL TOPOLOGY

• Future limit-operator [H'00]: $P \in \hat{L}(\sigma)$, $\sigma = \{P_n\}$ iff (i) $P \subset LI(\{P_n\})$ and (ii) P is maximal IP in $LS(\{P_n\})$, where

$$LS(\{P_n\}) := \bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} P_k.$$

• Past limit-operator: $F \in \check{L}(\sigma)$, $\sigma = \{F_n\}$ iff (i) $F \subset LI(\{F_n\})$, (ii) F is maximal IF in $LS(\{F_n\})$.

• Limit-operator: Given a pair $(P,F) \in \overline{V}$ and a sequence σ in \overline{V} , we say $(P,F) \in L(\sigma)$ iff

 $\operatorname{dec}(P) \subset \widehat{L}(\sigma), \qquad \operatorname{dec}(F) \subset \check{L}(\sigma).$

• Definition: The closed sets of \overline{V} with the chronological topology are those subsets $C \subset \overline{V}$ such that $L(\sigma) \subset C$ for any sequence $\sigma \subset C$.

Properties:

- Every chain $\delta \subset V$ has some limit in \overline{V} . If δ has endpoint then it is the "unique" limit.
- V is densely and topologically embedded into \overline{V} .
- $\partial(V)$ is always closed in \overline{V} .
- The chronological topology is always T_1 .
- If two elements of \overline{V} are non-Hausdorff related then they are necessarily in $\partial(V)$.
- Specially satisfactory limit behaviors in some examples.

★ Global hyperbolicity is also characterized in terms of the chronological boundary.

Mp-WAVES

 $V = M \times \mathbb{R}^2, \quad \langle \cdot, \cdot \rangle_L = \langle \cdot, \cdot \rangle + 2dudv + H(x, u)du^2$

 $(M, \langle \cdot, \cdot \rangle)$ "arbitrary" Riemannian manifold (v, u) natural coordinates of \mathbb{R}^2 $H: M \times \mathbb{R} \to \mathbb{R}$ "arbitrary" function ($\neq 0$).

 [BN'02] The conformal boundary of maximally supersymmetric 10-dimensional plane wave

$$M = \mathbb{R}^8, \quad H(x, u) = -\sum_i \mu^2 x^i x^i,$$

is a null "line" which spirals around ESU.

 [MR'03] The 1-dimensional character of the boundary also holds for more general plane waves (-*H* quadratic). Now, the "causal boundary" is needed!! * The low dimensionality of the causal boundary suggests that causality "degenerates" asymptotically.

* This seems to imply a "critical" behavior of the causality with respect to some metric co-efficients.

In fact, in [-S'03] the causality of Mp-waves is shown to be critical w.r.t. a quadratic spatial growth of coefficient -H:

- Mp-waves are strongly causal if -H is at most quadratic (i.e., plane waves).
- Mp-waves are globally hyperbolic if -H is subquadratic (and M complete).
- Mp-waves are non-distinguishing if -H is superquadratic.

CONCLUSIONS

- Our approach is entirely based on the global chronological structure of the spacetime.
- In particular, it provides an intrinsic and systematic method to construct an unique and natural boundary for any distinguishing spacetime.
- This boundary seems specially useful to study the "global" or "asymptotic" behavior of the causal structure of the spacetime.
- However, it is probably useless to study other aspects which require a deeper information from the spacetime, such as singularities!!