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BOUNDARIES OF SPACETIMES

• Interest:

- Singularity Theory.

- Asymptotic properties of fields and gravi-

tation.

...

- Quantum aspects of gravity.

• Many different boundaries in Relativity:

Conformal boundary, g-boundary, b-boundary,

Meyer’s construction, a-boundary, isocausal bo-

undary...causal boundary.
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CAUSAL BOUNDARY

• Motivation: Find a “systematic” and “in-

trinsic” procedure to obtain a “natural” and

“unique” boundary for “general” spacetimes.

• Guide Properties:

(1) Any inextensible causal curve must have

some limit in the boundary.

(2) Boundary exclusively based on the global

causal structure of the spacetime.

(3) Extendibility of the causality and topology

of the spacetime to the attached boundary.
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THE GKP APPROACH ’72

• Definition of Future Causal Boundary ∂+(V ):

(i) Attach a future ideal point to every inex-
tensible ↑-timelike curve γ,

(ii) two different curves γ 6= γ′ are attached
the same ideal point iff they have the same
past I−[γ] = I−[γ′].

Then,

∂+(V ) := set of all future ideal points.

• Definition of Future Causal Completion V +:

V + := V ∪ ∂+(V )
= {real points} ∪ {future ideal points}.
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• Equivalent re-formulation of the Future Causal
Boundary:

- Past set: P ⊂ V such that I−[P ] = P .

- Indecomposable past set (IP): past set P

which cannot be expressed as union of two
proper past sets.

- Proper IP (PIP): IP P such that P = I−(p).

- Terminal IP (TIP): IP P such that P 6=
I−(p) for any p ∈ V .

Then, we have the following identifications:

V ≡ PIPs, ∂+(V ) ≡ TIPs,

V + := V ∪ ∂+(V )
≡ PIPs ∪TIPs = IPs.
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• The dual notions of previous definitions are

introduced analogously: past ideal point, fu-

ture set, IF, PIF, TIF.

• This provides the following constructions for

the past:

- Past Causal Boundary ∂−(V );

∂−(V ) := set of all past ideal points
≡ TIFs.

- Past Causal Completion V −;

V − := V ∪ ∂−(V )
= {real points} ∪ {past ideal points}
≡ PIFs ∪TIFs = IFs.
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EXTENDED CAUSAL RELATIONS

• Causal Relations for the Future Causal Com-
pletion:

- Causal relation: P ≺ P ′ iff P ⊂ P ′.

- Chronological relation: P � P ′ iff there ex-
ists r ∈ P ′ such that P ⊂ I−(r).

• Causal Relations for the Past Causal Com-
pletion:

- Causal relation: F ≺ F ′ iff F ′ ⊂ F .

- Chronological relation: F � F ′ iff there ex-
ists r ∈ F such that F ′ ⊂ I+(r).

Remark: May include additional � relations.
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(TOTAL) CAUSAL BOUNDARY

• Naive approach: a priori, the most natural

definition for the total causal boundary is

∂(V ) := ∂+(V ) ∪ ∂−(V ).

• Problem: this definition DOES NOT WORK

in general! Some NON-TRIVIAL identifications

may be needed!

• First, they construct a pre-completion V ]

where obvious identifications between PIPs and

PIFs are established:

V ] := V + ∪ V −/ ∼

where I−(p) ∼ I+(p) for all p ∈ V .
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IDENTIFICATIONS AND TOPOLOGY

• Alexandrov Topology on V : subbase formed
by I−(p), I+(p), V \ I−(p), V \ I+(p).

• Generalized Alexandrov Topology on V ]: sub-
base formed by

F int := {P ∈ V + : P ∩ F 6= ∅}
F ext := {P ∈ V + : P = I−[S] ⇒ I+[S] 6⊂ F}
P int := {F ∈ V − : P ∩ F 6= ∅}
P ext := {F ∈ V − : F = I+[S] ⇒ I−[S] 6⊂ P}.

• Definition: The GKP causal completion is the
quotient space

V := V ]/ ∼h
∼h:= minimum equivalence relation ∼

such that V ]/ ∼ is Hausdorff.

• Definition: The GKP causal boundary is

∂(V ) := V \ V.
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• Benefits: “Intrinsic” and “systematic” pro-
cedure. Provides an “unique” and “general”
boundary.

• Objections:

- The singularity of Taub spacetime

ds2 = z−1/2(dt2−dz2)−z(dx2+dy2), z > 0

becomes an unique point! [KLL’86].

- The causal structure of the (total) bound-
ary is not analyzed.

- The topology for the completion of Minkows-
ki does not coincide with that derived from
the embedding into ESU [H’00].

- This method actually needs stably causal
spacetimes [S’88].
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• Causes:

- The treatment of past and future bound-

aries separately is an artificial procedure.

- Hausdorffness condition seems to be in-

compatible with the causal boundary ap-

proach.
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OTHER DEVELOPMENTS OF THE GKP
APPROACH

BUDIC-SACHS ’74:

? Identifications directly defined on V +∪V −:

P ∼bs F iff P =↓ F or F =↑ P .

? A new extended causal structure is defined:

P ≺ P ′ iff P ⊂ P ′

P � P ′ iff P ′ ∩ (↑ P ) 6= ∅
P ≺ F iff ∃ L̂, Ľ s.t. P ⊂ L̂, F ⊂ Ľ
P � F iff (↓ F ) ∩ (↑ P ) 6= ∅
...

? New generalized Alexandrov topology, now
defined directly on V : subbase formed by
I+(p), I−(p), V \ J−(p), V \ J+(p).
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• Benefits:

Satisfactory extension of � to V without ad-

ditional � relations on V .

Satisfactory extension of ≺ to V without addi-

tional ≺ relations on V iff V is causally simple.

If V is causally continuous, the resulting quo-

tient topology is Hausdorff and V becomes

topologically and densely embedded into V .

• Objections:

Very restrictive construction. Only applicable

to causally continuous spacetimes.

Bad topological behaviors in some examples

[KL’88].
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RACZ ’87:

? Generalized Alexandrov topology defined on
V + ∪ V −: subbase formed by F int, F ext,
P int, P ext, with

F int := {A ∈ V + ∪ V − : A ∈ V +, A ∩ F 6= ∅ or
A ∈ V −, I+[S] = A ⇒ I−[S] ∩ F 6= ∅}

F ext := {A ∈ V + ∪ V − : A ∈ V −, A 6⊂ F or
A ∈ V +, I−[S] = A ⇒ I+[S] 6⊂ F}.

? Consider the minimum set of identifica-
tions ∼r which ensures I−(p) ∼r I+(p).

? Under certain technical conditions on V the
resulting quotient topology is Hausdorff.

? Provide specific construction for stably causal
spacetimes.
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• Benefits:

Reproduce the 1-dimensional character of the

singularity region of Taub spacetime.

• Objections:

Essentially the same as the GKP approach.

Bad topological behaviors in some examples

[KL’92].
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SZABADOS ’88 ’89

? Identifications ∼s directly defined on V ]:

P ∼s F iff

{
P maximal IP into ↓ F
F maximal IF into ↑ P

Other relations P ∼s P ′, F ∼s F ′ are also

introduced.

? Chronological relation: m � m′ iff for some

Fα ∈ π−1(m) and some P ′
µ ∈ π−1(m′), it is

Fα ∩ P ′
µ 6= ∅.

? Causal relation: m ≺ m′ iff I+(m) ⊃ I+(m′)
and I−(m) ⊂ I−(m′).

? They take the quotient of the GKP gener-

alized Alexandrov topology on V ].
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• Benefits:

Overcome most of the troubles of the GKP

approach.

The resulting topology is Hausdorff.

• Objections:

Appear spurious � relations inherent to the

Szabados identification rule [MR’03].

Bad topological limits in concrete examples are

shown in [KL’92], [MR’03].
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MAROLF-ROSS ’03

? Relation ∼s is used to form pairs, instead
of establishing identifications between in-
decomposable sets:

(P, F ) ∈ V iff


P ∼s F

P = ∅, F 6∼s P ′ ∀P ′ ∈ V +

F = ∅, P 6∼s F ′ ∀F ′ ∈ V −.

? They essentially adopt the Szabados’ chronol-
ogy:

(P, F ) � (P ′, F ′) iff F ∩ P ′ 6= ∅.

? Rather technical topology: defined by im-
posing V \ L±(S), S ⊂ V to be open, with
L± operators entirely based on the chronol-
ogy of V .
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• Benefits:

This chronology does not introduce spurious

relations.

Topology with many satisfactory properties: V

becomes topologically embedded into V , the

boundary ∂(V ) is closed in V ...

• Objections:

Topology with too many convergent sequences.

Bad separation properties: it is not T1!

Another alternative topology suggested by Marolf-

Ross behaves even worse!
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THE CHRONOLOGICAL BOUNDARY

• Guide Properties:

(1) Any inextensible timelike curve must have

some limit in the boundary.

(2) Boundary exclusively based on the “global”

chronological structure of the spacetime.

(3) Extendibility of the chronology and topolo-

gy of the spacetime to the attached bound-

ary.

• From (2), this construction is only applicable

to (past/future) distinguishing spacetimes.
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CONSTRUCTION

? Idea: The completion V will be formed by all
“endpoints” of chains (timelike curves) in V .

• Definition: A pair (P, F ) ∈ Vp × Vf is said
generated by a chain (timelike curve) δ ⊂ V if
its components are the “limits” of the pasts
and the futures of the points of δ; that is

P = I−(LI({I−(pn)}))
F = I+(LI({I+(pn)})), δ = {pn},

where LI(An) := ∪∞n=1 ∩
∞
k=n Ak.

• Definition: A pair (P, F ) ∈ Vp × Vf is said
elemental if there is no another pair (P ′, F ′)
generated by some chain such that

dec(P ′) ⊂ dec(P ), dec(F ′) ⊂ dec(F ),

where

dec(P ) := {Pα}, Pα maximal IP inside P,
dec(F ) := {Fα}, Fα maximal IF inside F.
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• Definition: An elemental pair (P, F ) ∈ Vp ×
Vf is the endpoint of a chain δ ⊂ V if it is
generated by δ.

• Definition: The chronological completion V
is the set of endpoints of all chains in V :

V := set of all endpoints.

• Definition: The chronological boundary ∂(V )
is then

∂(V ) := V \ V.

Properties:

-There exist chains “without” endpoints.

-The endpoint of a chain, if exists, is “unique”.
It is preserved by subsequences.

-The unique pair in V with some component
equal to I−(p) or I+(p) is (I−(p), I+(p)).
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CHRONOLOGY

• Definition: (P, F ) � (P ′, F ′) iff F ∩ P ′ 6= ∅.

• Properties:

- No spurious � relations are introduced in
V .

- V is chronologically dense in V .

- I−((P, F )) ∩ V = P, I+((P, F )) ∩ V = F .

? Our completion is applicable to more general
objects than that of spacetime: the chronolog-
ical sets.

• Theorem: Completing the completion gives
nothing new: V ∼= V .

• Theorem: V is universal in a categorical sense.
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CHRONOLOGICAL TOPOLOGY

• Future limit-operator [H’00]: P ∈ L̂(σ), σ =

{Pn} iff (i) P ⊂ LI({Pn}) and (ii) P is maximal

IP in LS({Pn}), where

LS({Pn}) := ∩∞n=1 ∪
∞
k=n Pk.

• Past limit-operator: F ∈ Ľ(σ), σ = {Fn} iff (i)

F ⊂ LI({Fn}), (ii) F is maximal IF in LS({Fn}).

• Limit-operator: Given a pair (P, F ) ∈ V and

a sequence σ in V , we say (P, F ) ∈ L(σ) iff

dec(P ) ⊂ L̂(σ), dec(F ) ⊂ Ľ(σ).

• Definition: The closed sets of V with the

chronological topology are those subsets C ⊂
V such that L(σ) ⊂ C for any sequence σ ⊂ C.
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Properties:

- Every chain δ ⊂ V has some limit in V . If δ
has endpoint then it is the “unique” limit.

- V is densely and topologically embedded
into V .

- ∂(V ) is always closed in V .

- The chronological topology is always T1.

- If two elements of V are non-Hausdorff re-
lated then they are necessarily in ∂(V ).

- Specially satisfactory limit behaviors in some
examples.

? Global hyperbolicity is also characterized in
terms of the chronological boundary.
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Mp-WAVES

V = M×R2, 〈·, ·〉L = 〈·, ·〉+2dudv+H(x, u)du2

(M, 〈·, ·〉) “arbitrary” Riemannian manifold

(v, u) natural coordinates of R2

H : M × R → R “arbitrary” function ( 6≡ 0).

- [BN’02] The conformal boundary of maxi-

mally supersymmetric 10-dimensional plane

wave

M = R8, H(x, u) = −
∑
i

µ2xixi,

is a null “line” which spirals around ESU.

- [MR’03] The 1-dimensional character of the

boundary also holds for more general plane

waves (−H quadratic). Now, the “causal

boundary” is needed!!
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? The low dimensionality of the causal bound-
ary suggests that causality “degenerates” asymp-
totically.

? This seems to imply a “critical” behavior of
the causality with respect to some metric co-
efficients.

In fact, in [-S’03] the causality of Mp-waves is
shown to be critical w.r.t. a quadratic spatial
growth of coefficient −H:

- Mp-waves are strongly causal if −H is at
most quadratic (i.e., plane waves).

- Mp-waves are globally hyperbolic if −H is
subquadratic (and M complete).

- Mp-waves are non-distinguishing if −H is
superquadratic.
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CONCLUSIONS

Our approach is entirely based on the glob-

al chronological structure of the spacetime.

In particular, it provides an intrinsic and

systematic method to construct an unique

and natural boundary for any distinguishing

spacetime.

This boundary seems specially useful to

study the “global” or “asymptotic” behav-

ior of the causal structure of the spacetime.

However, it is probably useless to study

other aspects which require a deeper in-

formation from the spacetime, such as sin-

gularities!!
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