Lorentzian Sasakian manifolds with constant pointwise ϕ-sectional curvature.

Pablo S. Alegre Rueda
Departamento de Geometría y Topología
Universidad de Sevilla

23th November 2005
(1) Preliminaries.

- Generalized space forms
(2) Purpose
- How?
(3) Results
- Other complex space forms
- Lorentzian almost contact space forms
- Lorentzian para contact space forms
- Hyperbolic almost contact space forms
$\left(M^{2 n}, J, g\right)$ almost Hermitian:

$$
\begin{gathered}
J^{2}=-l d \\
g(J X, J Y)=g(X, Y)
\end{gathered}
$$

Kaehlerian: $\nabla J=0$.
$\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ almost contact metric.

$$
\begin{array}{ll}
\phi^{2} X=-X+\eta(X) \xi & \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) & \eta(X)=g(X, \xi)
\end{array}
$$

Contact metric: $\quad \Phi=d \eta$, with $\Phi(X, Y)=g(X, \phi Y)$.
K-contact: contact and ξ Killing.
Sasakian: $\quad\left(\nabla_{X} \phi\right) Y=g(X, \phi Y)-\eta(Y) X$.
$\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ almost contact metric.

$$
\begin{array}{ll}
\phi^{2} X=-X+\eta(X) \xi & \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) & \eta(X)=g(X, \xi)
\end{array}
$$

Contact metric: $\quad \Phi=d \eta$, with $\Phi(X, Y)=g(X, \phi Y)$.介
K-contact: contact and ξ Killing.
Sasakian: $\quad\left(\nabla_{X} \phi\right) Y=g(X, \phi Y)-\eta(Y) X$.
$\left(M^{n}, g\right)$ r.s.f.

$$
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y\}
$$

$\left(N^{2 n}, J, g\right)$ c.s.f. $N(c)$

$$
\begin{gathered}
R(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+\frac{c}{4}\{g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z\}
\end{gathered}
$$

$\left(N^{2 n}, J, g\right)$ c.s.f. $N(c)$

$$
\begin{gathered}
R(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+\frac{c}{4}\{g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z\}
\end{gathered}
$$

$\left(N^{2 n}, J, g\right)$ g.c.s.f. $N\left(F_{1}, F_{2}\right)$

$$
\begin{gathered}
R(X, Y) Z=F_{1}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+F_{2}\{g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z\}
\end{gathered}
$$

$$
\begin{aligned}
& \left(M^{2 n+1}, \phi, \xi, \eta, g\right) \text { S.s.f. } M(c) \\
& R(X, Y) Z=\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \\
& +\frac{c-1}{4}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{aligned}
$$

$$
\begin{aligned}
& \left(M^{2 n+1}, \phi, \xi, \eta, g\right) \text { S.s.f. } M(c) \\
& R(X, Y) Z=\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \\
& +\frac{c-1}{4}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{aligned}
$$

Definition
$\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ g.S.s.f. $M\left(f_{1}, f_{2}, f_{3}\right)$

$$
R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+
$$

$$
+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+
$$

$$
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
$$

Study the curvature tensor of manifolds with

- Lorentzian metric
- any "contact" structure
- pointwise constant sectional curvature
- other semi-defined metric (ϕ, ξ, η).

Problem

Let be $M(\phi, \eta, \xi, g), g$ Lorentz.

$$
g(\phi X, \phi X)=g(X, Y)-\eta(X) \eta(X)
$$

If $X \perp \xi$ is space like $\Rightarrow \quad \phi X$ is space like.
If $X \perp \xi$ is temporal $\Rightarrow \quad \phi X$ is temporal.

- Other structures.
- Other relations with the metric.

Warped product

(N, J, G) almost Hermitian $\quad M=\mathbf{R} \times f N \quad f>0$

$$
\begin{gathered}
g_{f}=\pi^{*}\left(g_{\mathrm{R}}\right)+(f \circ \pi)^{2} \sigma^{*}(G) \\
\phi(X)=\left(J \sigma_{*} X\right)^{*} \quad \xi=\frac{\partial}{\partial t} \quad \eta(X)=g_{f}(X, \xi)
\end{gathered}
$$

$\Rightarrow\left(M, \phi, \eta, \xi, g_{f}\right)$ is almost contact metric.

WARPED PRODUCT

Theorem

Given $N^{2 n}\left(F_{1}, F_{2}\right)$, the warped product $M^{2 n+1}=\mathbf{R} \times{ }_{f} N$ is a $M\left(f_{1}, f_{2}, f_{3}\right)$, with the following functions:

$$
\begin{aligned}
& f_{1}=\frac{\left(F_{1} \circ \pi\right)-f^{\prime 2}}{f^{2}}, \\
& f_{2}=\frac{\left(F_{2} \circ \pi\right)}{f^{2}}, \\
& f_{3}=\frac{\left(F_{1} \circ \pi\right)-f^{\prime 2}}{f^{2}}+\frac{f^{\prime \prime}}{f} .
\end{aligned}
$$

$$
N(c) \quad \Rightarrow \quad M\left(\frac{c-4 f^{\prime 2}}{4 f^{2}}, \frac{c}{4 f^{2}}, \frac{c-4 f^{\prime 2}}{4 f^{2}}+\frac{f^{\prime \prime}}{f}\right)
$$

Metric ($J^{4}=1$)-Manifold (Gadea and Montesinos)

$\left(M^{n}, g\right)$ pseudo Riemannian manifold
J a $(1,1)$-tensor such that $J^{4}=1$
g and J are related by one of the following:

- $g(J X, Y)+g(X, J Y)=0$ (adapted in the electromagnetic sense metric)
- $g(J X, J Y)=g(X, Y)$ (adapted Riemannian metric)

Metric ($J^{4}=1$)-Manifold (Gadea and Montesinos)

(M^{n}, g) pseudo Riemannian manifold
J a $(1,1)$-tensor such that $J^{4}=1$
g and J are related by one of the following:

- $g(J X, Y)+g(X, J Y)=0$ (adapted in the electromagnetic sense metric)
- $g(J X, J Y)=g(X, Y)$ (adapted Riemannian metric)

1) Almost Hermitian manifold, $J^{2}=-1$.
2) Almost para-Hermitian manifold, $J^{2}=1$ and aem.
3) Riemannian almost product manifold, $J^{2}=1$ and arm.

1) LORENTZIAN ALMOST CONTACT MANIFOLDS

($M^{2 n+1} \phi, \xi, \eta, g$) Lorentzian almost contact manifold:

$$
\begin{array}{ll}
\phi^{2} X=-X+\eta(X) \xi & \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) & \eta(X)=-g(X, \xi)
\end{array}
$$

1) LORENTZIAN ALMOST CONTACT MANIFOLDS

$\left(M^{2 n+1} \phi, \xi, \eta, g\right)$ Lorentzian almost contact manifold:

$$
\begin{array}{ll}
\phi^{2} X=-X+\eta(X) \xi & \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) & \eta(X)=-g(X, \xi)
\end{array}
$$

Lorentzian Sasakian: $\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X$.

Warped Product

(N, J, G) almost Hermitian $\quad M=\mathbf{R} \times f \quad f>0$

$$
\begin{gathered}
g_{f}=-\pi^{*}\left(g_{\mathbf{R}}\right)+(f \circ \pi)^{2} \sigma^{*}(G) \\
\phi(X)=\left(J \sigma_{*} X\right)^{*} \quad \xi=\frac{\partial}{\partial t} \quad \eta(X)=-g_{f}(X, \xi)
\end{gathered}
$$

$\Rightarrow\left(M, \phi, \eta, \xi, g_{f}\right)$ is a Lorentzian almost contact manifold.
3) Hyperbolic almost contact

Warped Product

Theorem

Given $N^{2 n}\left(F_{1}, F_{2}\right)$, the warped product $M^{2 n+1}=\mathbf{R} \times_{f} N$ has the following curvature tensor

$$
R=f_{1} R_{1}+f_{2} R_{2}+f_{3} \widetilde{R}_{3},
$$

with

$$
f_{1}=\frac{\left(F_{1} \circ \pi\right)+f^{\prime 2}}{f^{2}}, \quad f_{2}=\frac{\left(F_{2} \circ \pi\right)}{f^{2}}, \quad f_{3}=\frac{\left(F_{1} \circ \pi\right)+f^{\prime 2}}{f^{2}}-\frac{f^{\prime \prime}}{f}
$$

and $\widetilde{R}_{3}(X, Y) Z=$
$=\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X-g(X, Z) \eta(Y) \xi+g(Y, Z) \eta(X) \xi$.

Other complex structures

1) Lorentzian almost contact
2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

2) Lorentzian Para-Sasakian

$\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ Lorentzian almost para contact metric.

$$
\begin{array}{ll}
\phi^{2} X=X+\eta(X) \xi & \eta(\xi)=-1 \\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) & \eta(X)=g(X, \xi)
\end{array}
$$

Other complex structures

1) Lorentzian almost contact
2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

2) Lorentzian Para-Sasakian

($M^{2 n+1}, \phi, \xi, \eta, g$) Lorentzian almost para contact metric.

$$
\begin{array}{ll}
\phi^{2} X=X+\eta(X) \xi & \eta(\xi)=-1 \\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) & \eta(X)=g(X, \xi)
\end{array}
$$

L.P.-Sasakian: $\left(\nabla_{X} \phi\right) Y=g(X, Y)+\eta(Y) X+2 \eta(X) \eta(Y) \xi$.
3) Hyperbolic almost contact

Warped Product

(N, J, G) almost product manifold $\quad M=\mathbf{R} \times f \quad f>0$

$$
\begin{gathered}
g_{f}=-\pi^{*}\left(g_{\mathrm{R}}\right)+(f \circ \pi)^{2} \sigma^{*}(G) \\
\phi(X)=\left(J \sigma_{*} X\right)^{*} \quad \xi=\frac{\partial}{\partial t} \quad \eta(X)=g_{f}(X, \xi)
\end{gathered}
$$

$\Rightarrow\left(M, \phi, \eta, \xi, g_{f}\right)$ is a Lorentzian almost para contact manifold.

Warped Product

Theorem

Let be $N^{2 n}$ an almost product manifold with

$$
\begin{aligned}
& R(X, Y) Z=F_{1}\{g(V, W) U-g(U, W) V\} \\
& +F_{2}\{g(U, J W) J V-g(V, J W) J U\} .
\end{aligned}
$$

Then $M^{2 n+1}=\mathbf{R} \times{ }_{f} N$ has the following curvature tensor

$$
R=f_{1} R_{1}+f_{2} \widetilde{R}_{2}+f_{3} R_{3},
$$

with

$$
\begin{aligned}
& f_{1}=\frac{\left(F_{1} \circ \pi\right)-f^{\prime 2}}{f^{2}}, \quad f_{2}=\frac{\left(F_{2} \circ \pi\right)}{f^{2}}, \quad f_{3}=-\frac{\left(F_{1} \circ \pi\right)-f^{\prime 2}}{f^{2}}+\frac{f^{\prime \prime}}{f} \\
& \text { and } \widetilde{R}_{2}(X, Y) Z=g_{f}(X, \phi Z) \phi Y-g_{f}(Y, \phi Z) \phi X .
\end{aligned}
$$

Other complex structures

1) Lorentzian almost contact
2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

3) Hyperbolic almost contact

$\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ hyperbolic almost contact manifold.

$$
\begin{array}{ll}
\phi^{2} X=X+\eta(X) \xi & \eta(\xi)=-1 \\
g(\phi X, \phi Y)=-g(X, Y)-\eta(X) \eta(Y) & \eta(X)=g(X, \xi)
\end{array}
$$

g is a semi-defined metric.

Warped Product

(N, J, G) almost para-Hermitian manifold $\quad M=\mathbf{R} \times{ }_{f} N \quad f>0$

$$
\begin{gathered}
g_{f}=-\pi^{*}\left(g_{\mathrm{R}}\right)+(f \circ \pi)^{2} \sigma^{*}(G) \\
\phi(X)=\left(J \sigma_{*} X\right)^{*} \quad \xi=\frac{\partial}{\partial t} \quad \eta(X)=g_{f}(X, \xi)
\end{gathered}
$$

$\Rightarrow\left(M, \phi, \xi, \eta, g_{f}\right)$ is a hyperbolic almost contact manifold.

Other complex structures

1) Lorentzian almost contact
2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

WARPED PRODUCT

Theorem

Given $N^{2 n}$ para-Hermitian with constant J-sectional curvature, c, the warped product $M^{2 n+1}=\mathbf{R} \times_{f} N$ has the following curvature tensor

$$
R=f_{1} R_{1}+f_{2} R_{2}+f_{3} R_{3}
$$

with

$$
\begin{aligned}
& f_{1}=\frac{c+4 f^{\prime 2}}{4 f^{2}} \\
& f_{2}=-\frac{c}{4 f^{2}} \\
& f_{3}=-\frac{c+4 f^{\prime 2}}{4 f^{2}}+\frac{f^{\prime \prime}}{f} .
\end{aligned}
$$

- Obstructions for some dimensions
- Structures
- Other examples

Bibliography
L. Bhatt and K.K. Dube. On CR-submanifolds of a trans para Sasakian manifolds. Nepali Math. Sci. Rep. 19 (2001), 57-62. P.M. Gadea and A. Montesinos Amibilia. Spaces of constant para-holomorphic sectional curvature. Pacific J. Math. (1) 136 (1989), 85-101.
D. Janssens and L. Vanhecke. Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1-27.
K. Matsumoto and I. Mihai. On a certain trnsformation in a Lorentzian para-Sasakian manifold. Tensor N.S.47(1988), 189-197. B. O'Neill. Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics 103.
I. Toshiniko. Spacelike maximal surfaces with constant scalar normal curvature in a normal contact Lorentzian manifold. B. Malaysian Math. Soc. 21 (1998), 31-36.

