Lorentzian Sasakian manifolds with constant pointwise ϕ -sectional curvature.

Pablo S. Alegre Rueda

Departamento de Geometría y Topología

Universidad de Sevilla

23th November 2005

- Preliminaries.
 - Generalized space forms
- 2 Purpose
 - How?

Results

- Other complex space forms
- Lorentzian almost contact space forms
- Lorentzian para contact space forms
- Hyperbolic almost contact space forms

 (M^{2n}, J, g) almost Hermitian:

$$J^2 = -Id$$

$$g(JX,JY)=g(X,Y)$$

Kaehlerian: $\nabla J = 0$.

 $(M^{2n+1}, \phi, \xi, \eta, g)$ almost contact metric.

$$\begin{split} \phi^2 X &= -X + \eta(X)\xi & \eta(\xi) = 1 \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y) & \eta(X) = g(X, \xi) \end{split}$$

Contact metric: $\Phi = d\eta$, with $\Phi(X, Y) = g(X, \phi Y)$.

K-contact: contact and ξ Killing.

Sasakian:
$$(\nabla_X \phi) Y = g(X, \phi Y) - \eta(Y) X$$
.

 $(M^{2n+1}, \phi, \xi, \eta, g)$ almost contact metric.

$$\begin{array}{ll} \phi^2 X = -X + \eta(X)\xi & \eta(\xi) = 1 \\ g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) & \eta(X) = g(X, \xi) \end{array}$$

Contact metric: $\Phi = d\eta$, with $\Phi(X, Y) = g(X, \phi Y)$.

 \uparrow

K-contact: contact and ξ Killing.

 \uparrow

Sasakian: $(\nabla_X \phi) Y = g(X, \phi Y) - \eta(Y) X$.

 (M^n,g) r.s.f.

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}$$

$$(N^{2n}, J, g)$$
 c.s.f. $N(c)$
$$R(X, Y)Z = \frac{c}{4} \{ g(Y, Z)X - g(X, Z)Y \} + \frac{c}{4} \{ g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ \}$$

$$(N^{2n}, J, g)$$
 c.s.f. $N(c)$

$$R(X, Y)Z = \frac{c}{4} \{g(Y, Z)X - g(X, Z)Y\} + \frac{c}{4} \{g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ\} \}$$
 (N^{2n}, J, g) g.c.s.f. $N(F_1, F_2)$

$$R(X, Y)Z = F_1 \{g(Y, Z)X - g(X, Z)Y\} + \frac{c}{4} \{g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ\} \}$$

$$(M^{2n+1}, \phi, \xi, \eta, g) \text{ S.s.f. } M(c)$$

$$R(X, Y)Z = \frac{c+3}{4} \{ g(Y, Z)X - g(X, Z)Y \} +$$

$$+ \frac{c-1}{4} \{ g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z \} +$$

$$+ \frac{c-1}{4} \{ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi \}$$

$$(M^{2n+1}, \phi, \xi, \eta, g) \text{ S.s.f. } M(c)$$

$$R(X, Y)Z = \frac{c+3}{4} \{ g(Y, Z)X - g(X, Z)Y \} + \frac{c-1}{4} \{ g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z \} + \frac{c-1}{4} \{ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi \}$$

Definition

$$(M^{2n+1}, \phi, \xi, \eta, g)$$
 g.S.s.f. $M(f_1, f_2, f_3)$
 $R(X, Y)Z = f_1\{g(Y, Z)X - g(X, Z)Y\} + f_2\{g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\}$

Study the curvature tensor of manifolds with

- Lorentzian metric
- any "contact" structure
- pointwise constant sectional curvature
- other semi-defined metric (ϕ, ξ, η) .

Problem

Let be $M(\phi, \eta, \xi, g)$, g Lorentz.

$$g(\phi X, \phi X) = g(X, Y) - \eta(X)\eta(X)$$

If $X \perp \xi$ is space like $\Rightarrow \phi X$ is space like. If $X \perp \xi$ is temporal $\Rightarrow \phi X$ is temporal.

- Other structures.
- Other relations with the metric.

Warped Product

$$(N, J, G)$$
 almost Hermitian $M = \mathbf{R} \times_f N$ $f > 0$

$$g_f = \pi^*(g_{\mathbf{R}}) + (f \circ \pi)^2 \sigma^*(G)$$

$$\phi(X) = (J\sigma_*X)^*$$
 $\xi = \frac{\partial}{\partial t}$ $\eta(X) = g_f(X, \xi)$

 \Rightarrow $(M, \phi, \eta, \xi, g_f)$ is almost contact metric.

Warped Product

Theorem

Given $N^{2n}(F_1, F_2)$, the warped product $M^{2n+1} = \mathbf{R} \times_f N$ is a $M(\mathbf{f_1}, \mathbf{f_2}, \mathbf{f_3})$, with the following functions:

$$f_{1} = \frac{(F_{1} \circ \pi) - f'^{2}}{f^{2}},$$

$$f_{2} = \frac{(F_{2} \circ \pi)}{f^{2}},$$

$$f_{3} = \frac{(F_{1} \circ \pi) - f'^{2}}{f^{2}} + \frac{f''}{f}.$$

$$N(c)$$
 \Rightarrow $M\left(\frac{c-4f'^2}{4f^2}, \frac{c}{4f^2}, \frac{c-4f'^2}{4f^2} + \frac{f''}{f}\right)$

- Lorentzian almost conta
- 2) Lorentzian Para-Sasakian 3) Hyperbolic almost contact
- METRIC $(J^4 = 1)$ -MANIFOLD (GADEA AND MONTESINOS)

 (M^n,g) pseudo Riemannian manifold J a (1,1)-tensor such that $J^4=1$ g and J are related by one of the following:

- g(JX, Y) + g(X, JY) = 0 (adapted in the electromagnetic sense metric)
- g(JX, JY) = g(X, Y) (adapted Riemannian metric)

METRIC $(J^4 = 1)$ -MANIFOLD (GADEA AND MONTESINOS)

 (M^n,g) pseudo Riemannian manifold J a (1,1)-tensor such that $J^4=1$ g and J are related by one of the following:

- g(JX, Y) + g(X, JY) = 0 (adapted in the electromagnetic sense metric)
- g(JX, JY) = g(X, Y) (adapted Riemannian metric)
- 1) Almost Hermitian manifold, $J^2 = -1$.
- 2) Almost para-Hermitian manifold, $J^2 = 1$ and aem.
- 3) Riemannian almost product manifold, $J^2 = 1$ and arm.

Lorentzian almost contact
 Lorentzian Para-Sasakian

3) Hyperbolic almost contact

1) Lorentzian almost contact manifolds

 $(M^{2n+1}\phi, \xi, \eta, g)$ Lorentzian almost contact manifold:

$$\begin{array}{ll} \phi^2 X = -X + \eta(X)\xi & \eta(\xi) = 1 \\ g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) & \eta(X) = -g(X, \xi) \end{array}$$

- Other complex structures
 1) Lorentzian almost contact
- 2) Lorentzian Para-Sasakian
- 3) Hyperbolic almost contact

1) Lorentzian almost contact manifolds

 $(M^{2n+1}\phi, \xi, \eta, g)$ Lorentzian almost contact manifold:

$$\begin{array}{ll} \phi^2 X = -X + \eta(X)\xi & \eta(\xi) = 1 \\ g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) & \eta(X) = -g(X, \xi) \end{array}$$

Lorentzian Sasakian: $(\nabla_X \phi)Y = -g(X, Y)\xi - \eta(Y)X$.

- Other complex structures
- 1) Lorentzian almost contact 2) Lorentzian Para-Sasakian
- 3) Hyperbolic almost contact

WARPED PRODUCT

$$(N, J, G)$$
 almost Hermitian $M = \mathbf{R} \times_f N$ $f > 0$

$$g_f = -\pi^*(g_{\mathbf{R}}) + (f \circ \pi)^2 \sigma^*(G)$$

$$\phi(X) = (J\sigma_*X)^*$$
 $\xi = \frac{\partial}{\partial t}$ $\eta(X) = -g_f(X,\xi)$

 \Rightarrow $(M, \phi, \eta, \xi, g_f)$ is a Lorentzian almost contact manifold.

- Other complex structures
- 1) Lorentzian almost contact 2) Lorentzian Para-Sasakian
- 3) Hyperbolic almost contact

Warped Product

Theorem

Given $N^{2n}(F_1, F_2)$, the warped product $M^{2n+1} = \mathbf{R} \times_f N$ has the following curvature tensor

$$R = f_1 R_1 + f_2 R_2 + f_3 R_3,$$

with

$$f_1 = \frac{(F_1 \circ \pi) + f'^2}{f^2}, \quad f_2 = \frac{(F_2 \circ \pi)}{f^2}, \quad f_3 = \frac{(F_1 \circ \pi) + f'^2}{f^2} - \frac{f''}{f}$$

and
$$R_3(X, Y)Z =$$

= $\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X - g(X, Z)\eta(Y)\xi + g(Y, Z)\eta(X)\xi$.

2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

2) Lorentzian Para-Sasakian

 $(M^{2n+1}, \phi, \xi, \eta, g)$ Lorentzian almost para contact metric.

$$\begin{split} \phi^2 X &= X + \eta(X)\xi & \eta(\xi) = -1 \\ g(\phi X, \phi Y) &= g(X, Y) + \eta(X)\eta(Y) & \eta(X) = g(X, \xi) \end{split}$$

2) Lorentzian Para-Sasakian
3) Hyperbolic almost contact

2) Lorentzian Para-Sasakian

 $(M^{2n+1}, \phi, \xi, \eta, g)$ Lorentzian almost para contact metric.

$$\begin{array}{ll} \phi^2 X = X + \eta(X)\xi & \eta(\xi) = -1 \\ g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) & \eta(X) = g(X, \xi) \end{array}$$

L.P.-Sasakian:
$$(\nabla_X \phi) Y = g(X, Y) + \eta(Y) X + 2\eta(X) \eta(Y) \xi$$
.

2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

$$(N, J, G)$$
 almost product manifold $M = \mathbf{R} \times_f N$ $f > 0$

$$g_f = -\pi^*(g_{\mathsf{R}}) + (f \circ \pi)^2 \sigma^*(G)$$

$$\phi(X) = (J\sigma_*X)^*$$
 $\xi = \frac{\partial}{\partial t}$ $\eta(X) = g_f(X, \xi)$

 \Rightarrow $(M, \phi, \eta, \xi, g_f)$ is a Lorentzian almost para contact manifold.

Warped Product

Theorem

Let be N²ⁿ an almost product manifold with

$$R(X, Y)Z = F_1\{g(V, W)U - g(U, W)V\} + F_2\{g(U, JW)JV - g(V, JW)JU\}.$$

Then $M^{2n+1} = \mathbf{R} \times_f N$ has the following curvature tensor $R = \mathbf{f_1}R_1 + \mathbf{f_2}\widetilde{R}_2 + \mathbf{f_3}R_3$,

with

and
$$\widetilde{R}_2(X,Y)Z = g_f(X,\phi Z)\phi Y - g_f(Y,\phi Z)\phi X$$
.

Other complex structures
1) Lorentzian almost contact
2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

3) Hyperbolic almost contact

 $(M^{2n+1}, \phi, \xi, \eta, g)$ hyperbolic almost contact manifold.

$$\begin{split} \phi^2 X &= X + \eta(X)\xi & \eta(\xi) = -1 \\ g(\phi X, \phi Y) &= -g(X, Y) - \eta(X)\eta(Y) & \eta(X) = g(X, \xi) \end{split}$$

g is a semi-defined metric.

WARPED PRODUCT

(N, J, G) almost para-Hermitian manifold $M = \mathbf{R} \times_f N$ f > 0

$$g_f = -\pi^*(g_{\mathsf{R}}) + (f \circ \pi)^2 \sigma^*(G)$$

$$\phi(X) = (J\sigma_*X)^*$$
 $\xi = \frac{\partial}{\partial t}$ $\eta(X) = g_f(X, \xi)$

 \Rightarrow $(M, \phi, \xi, \eta, g_f)$ is a hyperbolic almost contact manifold.

2) Lorentzian Para-Sasakian3) Hyperbolic almost contact

Warped Product

Theorem

Given N^{2n} para-Hermitian with constant J-sectional curvature, c, the warped product $M^{2n+1} = \mathbf{R} \times_f N$ has the following curvature tensor

$$R = f_1 R_1 + f_2 R_2 + f_3 R_3,$$

with

$$f_1 = \frac{c + 4f'^2}{4f^2},$$

$$f_2 = -\frac{c}{4f^2},$$

$$f_3 = -\frac{c + 4f'^2}{4f^2} + \frac{f''}{f}.$$

- Obstructions for some dimensions
- Structures
- Other examples

Bibliography

- L. Bhatt and K.K. Dube. On CR-submanifolds of a trans para Sasakian manifolds. *Nepali Math. Sci. Rep.* **19** (2001), 57-62.
- P.M. GADEA AND A. MONTESINOS AMIBILIA. Spaces of constant para-holomorphic sectional curvature. *Pacific J. Math.*
- (1) **136** (1989), 85-101.
- D. Janssens and L. Vanhecke. Almost contact structures and curvature tensors. *Kodai Math. J.* **4** (1981), 1-27.
- K. Matsumoto and I. Mihai. On a certain trnsformation in a Lorentzian para-Sasakian manifold. *Tensor N.S.***47**(1988), 189-197.
- B. O'Neill. Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics 103.
- I. Toshihiko. Spacelike maximal surfaces with constant scalar normal curvature in a normal contact Lorentzian manifold. *B. Malaysian Math. Soc.* **21** (1998), 31-36.