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Preliminaries

Generalized space forms.

(M?".J, g) almost Hermitian:

Kaehlerian: VJ = 0.
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Preliminaries
Generalized space forms.
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+C%1{g(X’ 02)pY —g(Y,02)pX +2g(X, ¢Y)pZ}+
c—1
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Generalized space forms.

(M2n+17 ¢7 §7 777g) SSf M(C)

(v, X~ g(X.2) V)

R(X,Y)Z =

+C%1{g(X’ 02)pY —g(Y,02)pX +2g(X, ¢Y)pZ}+
c—1

2 (X)n(2)Y =n(Y)n(Z)X+g(X, Z)n(Y)E—g (Y. Z)n(X)&}

_l’_

Definition
(M1, 6.6.1.g) g.S.s.f. M(fi,fr. f3)

R(X,Y)Z = fi{g(Y,.Z)X — g(X,Z)Y}+

+h{g(X,9Z)pY — g(Y,0Z)pX +2g(X,¢Y)pZ}+
+HB{(X)M(Z2)Y —n(Y)In(Z2)X +g(X, Z)n(Y)E — g(Y, Z)n(X)E}
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Purpose

Study the curvature tensor of manifolds with
@ Lorentzian metric
@ any “contact” structure
@ pointwise constant sectional curvature
o

other semi-defined metric (¢, &,n).
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Purpose
P How?

Problem

Let be M(¢,n,&, g), g Lorentz.

g(eX, ¢X) = g(X,Y) — n(X)n(X)

If X L & isspace like = ¢X is space like.
If X L & istemporal = ¢X is temporal.

@ Other structures.

@ Other relations with the metric.

Manifolds with pointwise constant ¢-sectional curvature.



Purpose How?

WARPED PRODUCT

(N, J, G) almost Hermitian M=Rx¢N f>0

gr = 1"(gr) + (f o m)?0™(G)

0

oX) = (o X €= a(X)=gr(X.€)

= (M, ¢,n, &, gr) is almost contact metric.

Manifolds with pointwise constant ¢-sectional curvature.



Purpose How?

WARPED PRODUCT

Theorem
Given N?"(Fy, ), the warped product M?™1 =R x¢ N is a
M(f1, f>, f3), with the following functions:
(FLom) —
= a2
(F2 (¢] 7T)
f2 = f2 ’
B (FLom)—f"2 f"
f3 = 2 + £

c—4f2 ¢ c—4f?% f
Nie) = M(4f2’ 4f2’4f2+f>

Manifolds with pointwise constant ¢-sectional curvature.



Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

METRIC (J* = 1)-MANIFOLD
(GADEA AND MONTESINOS)

(M" g) pseudo Riemannian manifold
J a (1,1)-tensor such that J* =1
g and J are related by one of the following:
e g(UX,Y)+g(X,JY) =0 (adapted in the electromagnetic
sense metric)

e g(JX,JY) =g(X,Y) (adapted Riemannian metric)

Manifolds with pointwise constant ¢-sectional curvature.



Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

METRIC (J* = 1)-MANIFOLD
(GADEA AND MONTESINOS)

(M" g) pseudo Riemannian manifold
J a (1,1)-tensor such that J* =1
g and J are related by one of the following:

e g(UX,Y)+g(X,JY) =0 (adapted in the electromagnetic
sense metric)

e g(JX,JY) =g(X,Y) (adapted Riemannian metric)

1) Almost Hermitian manifold, J2 = —1.
2) Almost para-Hermitian manifold, J2 =1 and aem.

3) Riemannian almost product manifold, J2 =1 and arm.
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

1) LORENTZIAN ALMOST CONTACT MANIFOLDS

(M?7+1¢ ¢ n, g) Lorentzian almost contact manifold:

P*X = =X +n(X)¢ n(§) =1
g(oX,0Y) =g(X,Y) +n(X)n(Y) n(X) = —g(X,§)
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

(N, J, G) almost Hermitian M=Rx¢N f>0

gr = —7"(gr) + (f o m)?0™(G)

0

BX)= (o X) €= n(X)=—gr(X.€)

= (M, ¢,n,&, gr) is a Lorentzian almost contact manifold.
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

Theorem

Given N?"(Fy, F»), the warped product M?"t1 = R x¢ N has the
following curvature tensor B

R =fR1 + LR + f3Rs,
with

f_(Fom+f?  (Rom) . (Fom+f? f
’ ) 3 f2 f

v
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

2) LORENTZIAN PARA-SASAKIAN

(M?n+1 ¢ ¢ 1, g) Lorentzian almost para contact metric.

P*X = X +n(X)¢ n(§) = -1
g(eX,0Y) =g(X,Y)+n(X)n(Y) n(X) = g(X,¢)
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Other complex structures

1) Lorentzian almost contact
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2) LORENTZIAN PARA-SASAKIAN

(M?n+1 ¢ ¢ 1, g) Lorentzian almost para contact metric.

P*X = X +n(X)¢ n(§) = -1
g(eX,0Y) =g(X,Y)+n(X)n(Y) n(X) = g(X,¢)

L.P-Sasakian: (Vxo)Y = g(X,Y) +n(Y)X + 2n(X)n(Y)E.

Manifolds with pointwise constant ¢-sectional curvature.



Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

(N, J, G) almost product manifold M=Rx¢N f>0

gr = —m"(gr) + (f o m)%0"(G)

0

H(X) = (Jo. X)* €= 5, n(X) = gr(X,§)

= (M, ¢,n,&, gr) is a Lorentzian almost para contact manifold.
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

Theorem
Let be N°" an almost product manifold with

R(X,Y)Z = Fi{g(V, W)U — g(U, W)V}
+F{g(U, IW)JV — g(V, JW)JU}.

Then M?"t1 =R x¢ N has the following curvature tensor

R=fiRi+ HhRy + Rs,
with

g2
ﬂ:(Floﬂ') f 7 f2:(F207T)

f2 f'2 )
and Ro(X, Y)Z = gr(X, 02)dY — gr(Y, 6Z)X.

(Flom)—f? f
TR TF

fy = —
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Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

3) HYPERBOLIC ALMOST CONTACT

(M?n+1 ¢, ¢ n, g) hyperbolic almost contact manifold.

P*X = X +n(X)¢ (&) = -1
g(oX,0Y) = —g(X,Y) —n(X)n(Y) n(X) = g(X,§)

g is a semi-defined metric.

Manifolds with pointwise constant ¢-sectional curvature.




Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

(N, J, G) almost para-Hermitian manifold M = Rx¢N f>0

gr = —m"(gr) + (f o m)%07(G)

HX) = JoX) €= u(X) = gr(X.)

= (M, ¢,&,n,gr) is a hyperbolic almost contact manifold.

Manifolds with pointwise constant ¢-sectional curvature.




Other complex structures

1) Lorentzian almost contact
Results 2) Lorentzian Para-Sasakian

3) Hyperbolic almost contact

WARPED PRODUCT

Theorem
Given N2" para-Hermitian with constant J-sectional curvature, c,
the warped product M?"t1 = R x¢ N has the following curvature
tensor
R = fiRi + HhRy + f3Rs,
with
c+4f"?
fl = )
4f2
c
fh=——=
ST
c+4f%  f
f3 — —72 + —.
4f f
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Questions

@ Obstructions for some dimensions
@ Structures

@ Other examples
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