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ABSTRACT 

___________________________________________ 

The results obtained of the multivariate analysis of the NIR diffuse 

reflectance spectra, collected from intralipid solutions with glucose at 

different temperatures, shows that, temperature effects over the NIR 

measurements are quite similar to the caused by the variation in the glucose 

concentration in the scatterer solution. Also, was possible to calculate a Bias 

error per Celsius degree of 672.8 mg.dL-1 induced by the temperature, when 

is used a glucose prediction model calibrated at constant temperature. 

 

 

 

 

______________________________________________________________________________________ 
Introduction 

 

Multivariate data analysis techniques have the advantage to 

allow the possibility of projecting multivariate data into few 

dimensions and visualize them in a graphical interface. 

Multivariate analysis is able to handle large data sets and deal 

efficiently with real-world multivariate data, taking 

advantage of previously feared colinearity of spectral data. 

The most of the multivariate algorithms are based in the 

Principal Component Analysis method (PCA), which can be 

considered as the first step in exploratory analysis due to its 

efficient data-reduction and data-overview capabilities [1,2]. 

PCA is a mathematical method of reorganizing information 

in a data set of samples. It can be used when the data set 

contains information from only a few variables but it 

becomes more useful when there are large numbers of 

variables, as in the spectroscopic data. PCA calculates new 

variables, called “principal components” (PCs), which 

account for the majority of the variability in the data. This 

enables us to describe the information with fewer variables 

than was originally present. The first PC is the direction 

through the data that explains the most variability in the data. 

The second and subsequent, PC must be orthogonal to the 

previous PC and describes the maximum amount of the 

remaining variability. Once we know the directions of the 

PCs it is simple geometry that allows us to express the values 

of individual samples in terms of the PCs as linear 

summations of the original data multiplied by a coefficient 

which describes the PC. These new values are known as 

“scores” and each sample will have a score for each PC [3,4]. 
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Partial least square regression (PLSR) is its counterpart for 

regression analysis. PLSR is a predictive regression method 

based on estimated latent variables and applies to the 

simultaneous analysis of two data sets of the same objects. 

The purpose of PLSR is to build a linear model that enables 

prediction of a desired characteristic from a measured 

spectrum. PLSR is used routinely to correlate spectroscopic 

data with related chemical/physical data (in this case glucose 

and temperature) [5]. Both PCA and PLSR are bi-linear 

methods able to utilize the multivariate advantage when 

applied to co-linear first order data. They facilitate inference 

compensation and outlier detection when abnormal or 

erroneous signals are measured. In addition, multivariate 

analysis cover methods for spectral variable or interval 

selection aimed at improving regression models and at 

developing dedicated fast spectroscopic instruments [6-10]. 

On the other hand, the on-line non-contact quantification 

of glucose in a solution o turbid medium is a topic of interest 

and research in diverse fields, for example; food industry and 

medical science. The quantification of glucose, using 

spectroscopic methods in a combination with multivariate 

methods, has significant advantages because it can be 

implemented directly in the process line for real time quality 

monitoring of the continuous stream of raw products in the 

food industry. In the medical area, the non-invasive glucose 

quantification in biological fluids like whole blood or serum 

as a diagnostic and monitoring tool for diabetic patients has 

been extensively studied for numerous groups and 

researchers around the world [11-22]. 

However, the spectroscopic measurements could be 

affected for diverse external factors, as the scattering 

characteristics and temperature of the sample. Temperature 

is a critical parameter for near infrared (NIR) spectroscopic 

analysis of aqueous-based samples, because alters the extent 

of hydrogen bonding and causes significant shifts in the NIR 

band positions [23]. 

The effect of the temperature over the spectroscopic 

measurements is well known and reported in the literature 

[24]. Even, some researchers have reported the calibration of 

robust glucose prediction models that are insensitive to the 

temperature effect [25,26]. According to Masatoshi et al, the 

bias error induced by the temperature effect using a PLS-

model calibrated without taken into a count this effect, was 

of 500 mg dL-1 per Celsius degree. Masatoshi carried out a 

theoretical study using Monte Carlo simulation in order to 

evaluate that bias error in the glucose prediction due to the 

temperature effect in a scatterer medium like intralipid using 

a range of glucose concentration from 0 to 10,000 mg dL-1 in 

the range of 1200 to 1800 nm [25]. Another work in this 

direction was carried out by Houxin Cui et al., who calculate 

the effect of the temperature in the absorbance of aqueous 

glucose in a wavelength from 1200 to 1700 nm [26]. 

The main purpose of this paper was to analyze the NIR 

diffuse reflectance spectra, recorded from a scatterer solution 

with glucose at different concentrations, using multivariate 

methods like PCA and PLSR as a tool for spectroscopic data 

analysis, in order to demonstrate and quantify the 

temperature effect in this kind of spectroscopic 

measurements. However these methods and methodology 

could be extended for other cases of study and this paper 

could serve as a reference for the students which are 

interested in extract subtle information of spectral data. 

 

 

Materials and Methods 

 

Methodology 

As scatterer medium, a two percent intralipid solution was 

prepared, using a commercial intralipid solution (lipofundin 

N 20%) and distilled water, in a volume proportion of 10:90, 

respectively. One liter of “lipofundin” contains: 200 g of 

soybean oil; 25 g of glycerol; 12 g of egg lecithin; sodium 

oleate; 200 mg of a-Tocoferol and distilled water; with an 

Osmolarity (mOsm/l) of 380 and a pH of 6.5-8.5, [27-29].  

Four experiments were carried out independently, and 

every experiment was divided into three stages. In the first 

stage, NIR diffuse reflectance spectra of the intralipid at 

different glucose concentrations ranged from 0 to 5000 

mg.dL-1 at a constant temperature of 30ºC, were collected, 

in order to calibrate a PLS-prediction model.  

In the second stage, the temperature of the intralipids of 

the stage one, for the glucose concentration of 5000 mg dL-

1 was increased from 30 to 50ºC and multiple NIR spectra 

were taken every 2ºC. In the third stage, was predicted the 

glucose concentration from NIR spectra collected in the 

stage two using the model calibrated in the stage one, in order 

to estimate the prediction error caused by the temperature 

effect. In all stages, the experimental setup remained 

constant. 

 

First stage: Calibration 

In this stage, the goals were; by means of PCA scores and 

loadings analysis, to identify the spectral regions associated 

with the increases in glucose concentration, verify that the 

changes in the NIR spectra was correlated with the variation 

in the glucose concentration, and using the PLSR method to 

calibrate a prediction model for the glucose concentration at 

constant temperature. For this purpose, the glucose 

concentration in the intralipid was increased from 0 to 5000 

mg.dL-1 at increments of 500 mg dL-1 at 30±0.1ºC. The high 

glucose concentration values were chosen only with the 

purpose to highlight visually the spectral variations due to 

increase in the glucose concentration. The collected raw 

spectra were centered and scaled previously to the analysis 

with PCA and PLSR  

Centering and scaling ensure to us, that all results will be 

interpretable in terms of variation around the mean and each 

variable get the same variance. For more details of centering 

and scaling see the next reference [2]. 
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Second stage: Change in temperature 

The main objective of this stage was to identify those spectral 

regions where variations due to increases of temperature are 

located. For this purpose, the temperature of the intralipid 

solution of the stage one at 5000 mg dL-1 was increased from 

30±0.1 to 50±0.1ºC at intervals of 2±0.1ºC. We choose the 

concentration of 5000 mg dL-1 for experimental simplicity. 

Finally, the recorded spectra were analyzed by PCA and 

PLSR, in order to verify that the spectral changes were 

correlated with the variations in temperature. 

 

Third stage: Prediction 

The objective in this stage was to calculate the error in the 

prediction of glucose concentration due to an increase in the 

temperature of the sample. To do this, we following the next 

steps: firstly, the glucose concentration was predicted from 

the NIR spectra collected in the stage two using the PLS-

prediction model calibrated in the stage one, for the four 

experiments. Then, for every temperature measured, we 

obtain the average of the predicted glucose concentration 

value. After that, the behavior of the average of predicted 

values was computed by fitting a polynomial function. 

Finally the Bias error per Celsius degree was calculated 

using the data of the fitting. (See figure 1). 

 

 
Figure 1. Schematic representation of the procedure followed to 

calculate the Bias error per Celsius degree caused by the variation 

of the temperature in the intralipid solution. For the raw data 

obtained in the stage 2, we applied the prediction model calibrated 

in the stage 1, then we obtain the average of the glucose prediction 

values obtained in the stage 3 for different temperatures, and a 

polynomial function was adjusted to the data, then the Bias error 

was calculated using the values of the polynomial function. 

 

 

Experimental Setup 

 

To collect the NIR diffuse reflectance spectra, we using a 

Tungsten-Halogen lamp (Ocean Optics LS-1, 6.5 W) with a 

spectral range of 360-2500 nm, with decay rate of 

~0.1%/hour after 100 hours burn-in, as a NIR radiation 

source. The NIR radiation was directed towards the sample 

using a bifurcate optical fiber (Ocean Optics, R400-7 Vis-

NIR) with a stainless steel probe. The NIR spectra were 

recorded with a NIR spectrometer (Ocean Optics, NIR512) 

equipped with an air cooled linear array detector of InGaAs 

(Hamamatsu G9204-512), with a 512 pixel matrix, each one 

25 x 500 μm, with a detection range from 850 to 1700 nm, 

an optical resolution of ~3nm FWHM and a signal to-noise- 

ratio (SNR) of 4000:1. 

Before to collect the spectra, the NIR spectrometer was 

calibrated, subtracting the dark (electronic contribution) and 

Reference (light source) signals. 

To collect the NIR spectra of intralipid solutions, we 

followed the next procedure; the 2% intralipid was contained 

in a glass recipient over a stirrer hot plate with digital display 

(PC-620D, CORNING), a thermocouple (FLUKE, K-Type 

thermocouple) was put inside of the intralipid solution to 

monitoring the sample temperature with a thermometer 

(FLUKE model 51-2), then the optical fiber probe was put in 

contact with the glass recipient at a position of 90 degrees, 

according with the Masatoshi theoretical configuration for 

incident radiation.  

The NIR spectra were collected with an integration time 

of 2000 ms, for every glucose concentration and 

temperature, and analyzed in the range from 900 to 1600 nm. 

Five spectra (replicas) were recorded for every concentration 

and temperature, in order to characterize the spectral 

variance. The spectral variance was characterized by 

analyzing the 100% lines, according with the procedure 

described by Arnold and Small [30]. The quality of the 

combination region spectra can be assessed by an analysis of 

the root-means square (rms) noise of 100% lines. In this 

analysis, 100% lines were computed for the case of intralipid 

solution with a glucose concentration of 1000 mg.dL-1. The 

resulting spectra were converted to absorbance units and 

fitted to a second-order polynomial. The rms noise was then 

computed about the polynomial fit over a restricted spectral 

range. In this study, the average rms noise determined from 

all samples was 16 μ AU over the 900-1600 nm spectral 

range. 

The data acquisition was realized via OOIBase32 

software (version 2.0.0.5, OceanOptics, USA) which also 

controlled the instrument. Multivariate data analysis and 

preprocessing as centering and scaling, was realized via 

UnscramblerTM (version 8.0, CAMO, Norway). 

 

 

Analysis and Results 

 

Figures 2 depict the NIR diffuse reflectance spectra recorded 

in the stage one, for an intralipid solution at different glucose 

concentrations. As can be seen, the absorbance values 

increases along whole spectral range (900-1600 nm), 

according with the increase of glucose concentration. This 

effect could be attributed to a change in the refractive index 

of the scatterer medium due to the glucose [22]. 

In order to visualize those spectral regions with the major 

spectral variations related with the change in glucose 

concentration, the NIR spectra where superposed, moving 

horizontally each spectrum at the same absorption intensity 

value at the wavelength of 900 nm, as is shown in figure 3 

(a) and (b). The superposed spectra show noticeable 
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variations in the absorption band centered in approximately 

1445 nm. According with Khalil, this broadband is 

associated to (2νOH), (νOH + νCH) and (2νCH) overtones 

[17]. Also, subtle changes in the absorbance can be observed 

in the region from 900 to 1400 nm, which is assigned to 

(3νOH), and (3νCH) overtones.  

 

 

 
Figure 2. Typical NIR diffuse reflectance spectra of intralipid at 

different glucose concentrations (0-5000 mg dL-1) in the range of 

900 to 1600 nm. (a), and, zoom of the band centered in 1445 nm 

(b). The arrows indicate the increasing in glucose concentration. 

 

 

Analyzing the region around 1445 nm, we found a linear 

behavior between absorbance and glucose concentrations, as 

is showed in the figure 4. In the table 1 are displayed the 

absorbance values as function of the glucose concentration. 

The PCA-Scores plot, suggest that spectral variations are 

attributed mainly to variations in the glucose concentration, 

as can be observed in figure 5 (a), where the first component 

(PC1) explains 100% of the total variance, associated with 

the increase in glucose concentration for each experiment. 

The PC1-loading plot in the figure 5 (b), shows the highest 

loading values around of the 1445 nm, which suggest that the 

most important changes and influent variables for the PLSR 

prediction model, due to the variation in the glucose 

concentration, are located in those wavelengths. 

 

 
 

 
Figure 3. Superposed NIR diffuse reflectance spectra at different 

glucose concentrations (a). The spectral differences are located in 

the band centered in 1445 nm. Zoom of the band centered in 1445 

nm (b). The increase in the glucose concentration is indicated by 

the arrows. 

 

 

 
Figure 4. Absorbance values at 1445 nm vs glucose 

concentration, for the raw NIR spectra. The plot shows a 

linear behavior with a correlation coefficient (r) of 0.99. 
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Figure 5. PCA-scores plot for the NIR spectra at glucose 

concentrations ranged between 0 and 5000 mg.dL-1 (a). The 

samples are distributed according with the increment in their 

glucose concentration, along PC1, which explain the 100% of the 

variance in the data set. PC1-Loading, the highest loading values 

around 1445 nm, suggest that the most important and influent 

variables in the PLSR model are located around that wavelength 

(b). 

 

Table 1. Absorbance intensity at 1445 nm, as 

function of the glucose concentration, in the 

range from 0 to 5000 mg.dL-1. 

Concentration  

(mg dL-1) 

Absorbance intensity 

at 1445 nm 

  

0 1.361 

500 1.363 

1000 1.367 

1500 1.370 

2000 1.374 

2500 1.376 

3000 1.381 

3500 1.384 

4000 1.388 

4500 1.389 

5000 1.392 

 

 

After PCA analysis, four PLSR models using the full 

cross validation method and one-PLS factor for the 

predictions, were calibrated, using the NIR diffuse 

reflectance spectra at different glucose concentrations. In the 

table 2 are displayed the r2 and RMSEC values for each 

calibrated model. The high correlation coefficient and low 

RMSEC values obtained, indicates that spectral variations 

recorded are highly correlated with the changes in the 

glucose concentration. For more details about cross-

validation see the next references [2,31]. 

 

Table 2. Correlation coefficient values and Root Mean Square 

Error of Calibration of the four independent PLS-glucose 

prediction models calibrated in stage one. 

Experiment r2  RMSEC (mg.dL-1) 

1 0.99 57.7 

2 0.99 33.1 

3 0.99 46.4 

4 0.99 24.9 

 

NIR spectra collected in the second stage, are depicted in 

the figure 6. In this figure, can be observed that the spectral 

variations in the scatterer solution, due to the increase of 

temperature are located along whole spectral range (900-

1600 nm), as happened in the stage one, but we can observe 

a significant band shift of ~15 nm, in the broad band centered 

in 1445 nm, due to the temperature effect [23]. By means of 

analysis of the absorbance intensity values along whole 

spectral range, we could identify that this band shift causes a 

linear behavior with negative slope in  the region   from 1460  

to 1600 nm, and a non linear behavior from 1420 to 1460 nm. 

However in the range of 900 to 1420 nm, remains a linear 

behavior with positive slope as it happened in the stage one, 

for changes in the glucose concentration. These behaviors 

are showed in the figure 7 (a), (b), (c), and their values are 

displayed in the table 3. These results are in agreement with 

those reported for Houxin Cui in experimental aqueous 

solution and Masatoshi Tarumi in their theoretical simulation 

[25,26] 

 
Figure 6. Raw NIR spectra of the intralipid at a glucose 

concentration of 5000 mg.dL-1 at different temperatures, ranged 

between 30 to 50ºC on intervals of 2ºC. The arrows show the 

behavior for the different wavelength regions. 
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Figure 7. P Absorbance values of raw NIR spectra of stage two at 

three different wavelengths: 1000 nm (a), 1440 nm (b), and 1550 

nm (c), versus temperature. 

 

 

Figure 8, shows the PCA-Scores plot of PC2 vs PC1 

obtained from stage two. These first two components, 

explains the 99% of the total variance of the spectra; where 

PC1 explains the spectral variations related with the 

temperature increase, according with the distribution of the 

samples along the PC1 direction. 

 
Figure 9. PCA-Loading plots for PC1 and PC2 as wavelength 

function for the NIR spectra of the stage two.  

 

 

PC1-loading suggest that the band shift in 1445 nm is the 

most important effect caused by the temperature in the NIR 

spectra in the range from 900 to 1600 nm and the linear 

behavior observed in the range from 900 to 1420 nm, and 

from 1460 to 1600 nm, means that spectral variations in 

those variables are constant. However, in the region from 

1420 to 1460 nm are located the largest loadings, which 

correspond to the most important diagnostic variables related 

with the temperature effect. The PC2-loading plot, show a 

band centered in approximately 1450 nm, which could be 

associated to intralipid scattering effects related indirectly 

with the temperatura. 

 

 

Table 3. Absorbance intensity at 1000, 1440 and 1550 nm as 

temperature function. 
Temp. 

( ºC ) 

Absorbance  

at 1000 nm 

Absorbance 

at 1440 nm 

Absorbance  

at 1550 nm 

30 0.676 1.393 1.149 

32 0.677 1.392 1.147 

34 0.680 1.395 1.148 

36 0.682 1.395 1.144 

38 0.683 1.396 1.143 

40 0.684 1.396 1.141 

42 0.686 1.397 1.139 

44 0.688 1.398 1.138 

46 0.688 1.391 1.130 

48 0.689 1.398 1.132 

50 0.689 1.397 1.130 

 

 

Also, the PC2-loading plot, show a band centered in 

approximately 1450 nm, which could be associated to 

intralipid scattering effects related indirectly with the 

temperature. 

In order to obtain the correlation values between the 

spectral variations and the temperature effect, we using the 

PLSR method in a full cross validation with two PCs. The r2 

and RMSEC values are displayed in the table 4. The high 

correlation values, indicate that, spectral variations in the 
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NIR spectra of stage two, are mainly due to the temperature 

effect. 

 

 

Table 4. Correlation coefficients and Root mean square 

error of calibration values of the spectroscopic data of 

stage two. 

Experiment r2 RMSEC (ºC) 

1 0.99 0.85 

2 0.99 0.81 

3 0.99 0.51 

4 0.99 0.22 

 

 

In the figure 10, are plotted the glucose prediction values 

obtained in the stage three, for each experiment, their 

average value and the fitting values. The data are displayed 

in the table 5.  

Finally, we obtain that, the temperature causes a similar 

effect, than the caused by the change in the glucose 

concentration, causing evident changes in the broadband 

centered at 1445 nm. As consequence, the temperature effect 

causes a Bias error of 672.8 mg dL-1, in our glucose 

predictions when the variations due to temperature are no 

taken into account in the calibration of the glucose prediction 

model. The Bias error was calculated using the theoretical 

values obtained of the polynomial fitting (table 5, column 8). 

The Bias error obtained is in agreement with the theoretical 

value calculated and reported by Masatoshi et al. 

 

 

 
Figure 10. Plot of predicted values obtained for each experiment, 

their mean predicted values (fill black square + black line) and the 

calculated values obtained of the polynomial adjust of the mean 

predicted values (Gray stars + gray line). 

 

 

Conclusions 

 

Multivariate methods are a powerful tool for the spectral data 

analysis. In this work we showed the application of 

multivariate data analysis for the particular study and 

quantification of the temperature effect over the NIR diffuse 

reflectance measurements, in order to quantify the glucose 

concentration in a scatterer medium using a PLSR model. 

The temperature variations in the sample cause a similar 

effect than caused by the variation in the glucose 

concentration, as is showed in the PCA-loading plots 

obtained in the stage one and two, where its evident that the 

band centered at 1445 nm is temperature-sensitive, and show 

the most important spectral variations for glucose and 

temperature changes. These effects were analyzed and 

demonstrated by PCA and PLSR methods. Finally we 

calculated a Bias error of 672.8 mg dL-1 per Celsius degree, 

induced by the temperature, in the prediction of glucose 

concentration. 

 

 

Table 5. Glucose prediction, mean and polynomial fitting 

values obtained in the stage three and plotted in the figure 10. 
Tempe
rature 

(ºC) 

Refer
ence 

(mg/

dL) 
 

Predi
ction 

(mg/

dL) 
Exp 

1 

Predi
ction 

(mg/

dL) 
Exp 

2 

Predi
ction 

(mg/

dL) 
Exp 

3 

Predi
ction 

(mg/

dL) 
Exp 

4 

Mean 
Predi

ction 

(mg/
dL) 

Polyn
omial 

fitting 

(mg/d
L) 

30 5000 4975 4965 4940 4887 4942 5012 

32 5000 5239 5170 5111 5571 5273 5208 

34 5000 5297 5431 5210 5720 5414 5384 

36 5000 5444 5535 5527 5792 5574 5538 

38 5000 5484 5703 5398 5855 5610 5672 

40 5000 6280 5786 5432 6057 5889 5784 

42 5000 5938 5874 5467 6031 5827 5871 

44 5000 6084 5989 5470 6087 5907 5936 

46 5000 6144 5845 5558 6105 5913 5981 

48 5000 6320 6104 5630 6069 6031 6004 

50 5000 6397 6080 5690 6023 6048 6006 

 

 

Acknowledgments 

 

The authors wish to thank to CONCYTEG for their financial 

support under the grant 07-04-K662-080 A2. 

 

 

References 

1. H. Martens and T. Næs, Methods for calibration, in 

Multivariate Calibration, Chap 3, p.97, Wiley, 

Chichester, England, 1989. 

2. K. H. Esbensen, Multivariate Data Analysis-In 

practice 5th Ed, CAMO Process AS, Oslo, 2001. 

3. T. Næs, T. Isaksson, T. Fearn and T. Davies, “A user-

friendly guide to multivariate calibration and 

classification”. NIR publications, Chichester (2002). 

4. A.M.C. Davies, Spectroscopy Europe 17(2) (2005) 

30. 

5. R. G. Brereton, Analyst 125 (2000) 2125. 

6. A.M.C. Davies, Spectroscopy Europe 18(4) (2006) 

23. 

7. A.M.C. Davies, Spectroscopy Europe 18(6) (2006) 

28. 



8 
 

8. C. Araujo Andrade, I. Campos-Canton, J.R. Martinez, 

G. Ortega-Zarzosa y F. Ruiz, Rev. Mex. Fís. 51(2) 

(2005) 67, 

9. J.R. Martínez, C. Araujo Andrade, S.A. Palomares 

Sánchez y G. Ortega-Zarzosa, Rev. Mex. Fís. 52(2) 

(2006) 142. 

10. J. M. Yáñez-Limón, R. Mayen-Mondragón, O. 

Martínez-Flores, R. Flores-Farias, F. Ruíz,C. Araujo-

Andrade and J. R. Martínez, Superficies y Vacío 18(1) 

(2005) 31. 

11. Mark A. Arnold, Gary W. Small, Dong Xiang, Jiang 

Qui, and David W. Murhammer, Anal. Chem. 76, 

(2004) 2583. 

12. Sergio Armenta, Salvador Garrigues, Miguel de la 

Guardia and Philippe Rondeau, Analytical Chimica 

Acta 545(1), (2005) 99. 

13. D. Cozzolino, L. Liu, W.U. Cynkar, R.G. Dambergs, 

L. Janik, C.B. Colby and M. Gishen, Analytical 

Chimica Acta 588(2), (2005) 224.  

14. S. Sivakesava and J. Irudayaraj, Journal of Food 

Science 66(7) (2001) 972. 

15. S. Sivakesava, J. M. K. Irudayaraj, R. L. Korach, 

Applied Engineering in Agriculture, 17(6) (2001) 

815. 

16. R. Marbach, T. Koshinsky, F. A. Gries and H. M. 

Heise, Appl. Spectrosc. 47 (1993) 875. 

17. O. S. Khalil, Clin. Chem. 45 (1999) 165. 

18. H. M. Heise, A. Bittner and R. Marbach, J. Near 

Infrared Spectrosc. 6 (1998) 349. 

19. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil 

and S. L. Monfre, Clin. Chem. 45 (1999) 1651. 

20. K. Yoen-Joo and Y. Gilwon, J. Biomed. Opt. 11(4) 

(2006) 041128.  

21. G. Yoon, A. K. Amerov, K. J. Jeon and Y.-J. Kim, 

Appl. Opt. 41(7) (2002) 1469. 

22. T. Koschinsky and L. Heinemann, Diabetes Metab. 

Res. Rev. 17 (2001) 113. 

23. Kevin H. Hazen, Mark A. Arnold, and Gary W. Small, 

Appl. Spectrosc. 48(4) (1994) 477. 

24. Hageman et al, Journal of NIR Spectroscopy 13 

(2005) 53. 

25. M. Tarumi, M. Shimada, T. Murakami, M. Tamura, 

M. Shimada, H. Arimoto and Y. Yamada, Phys. Med. 

Biol. 48 (2003) 2373. 

26. H. Cui, L. An, W. Chen, K. Xu, Opt. Exp. 13 (2005) 

6887. 

27. S.T. Flock, S.L. Jacques, B.C. Wilson, W.M. Star and 

M.J.C. van Gemert, Lasers in Surgery and Medicine 

12 (1992) 510. 

28. H.J. van Staveren, C.J.M. Moes, J. van Marie, S.A. 

Prahl and M.J.C. van Gemert, Applied Optics 30 

(1991) 4507. 

29. Tamara L. Troy and Suresh N. Thennadil, Technical 

report, Instrumentation Metrics, Inc. 

30. M. A. Arnold and G. W. Small, Anal. Chem. 77 

(2005) 5429. 

31. A.M.C. Davies, Spectroscopy Europe, 10(2) (1998) 

24. 

 

 

 

 

 


