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Abstract 
A novel three-stage method for the analysis of electroencephalographic (EEG) signals, 

concerning epileptic seizures, is proposed. First, segments of the EEG signals are analyzed 
using a time-frequency distribution and then, several features are extracted for each segment, 
representing the energy distribution over the time-frequency plane. Those features are used 
as an input in an artificial neural network (ANN), which provides the final classification of 
the EEG segments (existence of epileptic seizure or not). The evaluation results are very 
promising, indicating overall accuracy from 89.4% to 99%. 

 
1. Introduction 

Epilepsy is one of the most common neurological disorders with a prevalence of 
about 1% of the world’s population [1]. The epilepsy is characterized by a sudden and 
recurrent malfunction of the brain which is termed “seizure”. An epileptic seizure is a 
sudden synchronous and repetitive discharge of brain cells with symptoms depending 
on the location within the brain of the seizure onset, and the spread of the seizure. 
Long-term EEG (LTEEG) monitoring is used to closely monitor patients over extended 
periods, who have relatively infrequent but recurring atypical “turns” or seizures. 
LTEEG monitoring comprises continuous multichannel EEG and video recording over 
several days. This allows the seizures to be “captured” for in-depth off-line analysis. 
This information enables the expert to determine whether or not such seizures are of 
epileptic origin and, if so, determine the type and location of the epileptogenic activity. 

Research in automated epileptic seizure detection began in the 1970s and various 
algorithms addressing this problem have been presented [2]. Methods for automated 
detection of epileptic seizures may rely on the identification of various patterns such as 
an increase in amplitude [3], sustained rhythmic activity [4], or EEG flattening [5]. 
Several algorithms have been developed based on spectral [6-9] or wavelet features [10-
14], amplitude relative to background activity [15] and spatial context [15,16]. Chaotic 
features [17,18] such as correlation dimension [19], Lyapunov exponents [14,20] and 
entropy [21] have also been proposed to characterize the EEG signal. These features 
can then be used to classify the EEG signal using nearest neighbor classifiers [22], 
decision trees [8], ANNs [14,20], support vector machines (SVMs) [9,14] or adaptive 
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neuro-fuzzy inference systems [12,13,20] in order to identify the occurrence of 
seizures. It is crucial for seizure detection systems to result in high sensitivity, even if 
this results in a large number of false detections. Such systems can then be used to 
considerably reduce the amount of data that need to be reviewed; experts can then 
easily discard false detections. Therefore, epileptic seizures give rise to changes in 
certain frequencies bands. Recent works have focused on the analysis of the δ (0.4–4 
Hz), θ (4-8 Hz), α (8–12 Hz), and β (12–30 Hz) rhythms and their relation to epilepsy. 
An epileptic signal has components in both time and frequency, but the conventional 
time and frequency representations present only one aspect. A time-frequency (TF) 
distribution combines both time and frequency information into a single representation. 
Thus, TF analysis, which can be carried out with one of the several proposed TF 
distributions, has proven to be the most suitable tool for the analysis of EEG signals. 

In this work, we use a TF distribution in order to analyze EEG segments and extract 
several features from them. Then, these features are used to classify the segments 
concerning the presence or absence of epileptic seizures. The method is divided into 
three stages: (i) TF analysis and calculation of the power spectrum density (PSD) of 
each EEG segment; (ii) feature extraction, measuring the signal segment fractional 
energy on specific TF windows and (iii) classification of the segment, using an ANN. 
The method is evaluated for three different classification problems. To our knowledge, 
there is no study in the literature related to TF analysis and feature extraction reflecting 
the energy distribution over the TF plane, for epileptic seizure detection. In addition, no 
work addresses all three classification problems, which are directly related to the 
diagnosis provided by an expert. The obtained results indicate high accuracy. 
 
2. Materials and methods 
2.1. Dataset 

We used the dataset described in reference [23]. The complete dataset consists of five 
sets (denoted as Z, O, N, F and S) each containing 100 single-channel EEG segments 
each having 23.6 sec duration. Sets Z and O have been taken from surface EEG 
recordings of five healthy volunteers with eye open and closed, respectively. Signals in 
two sets have been measured in seizure-free intervals from five patients in the 
epileptogenic zone (F) and from the hippocampal formation of the opposite hemisphere 
of the brain (N). Set S contains seizure activity, selected from all recording sites 
exhibiting ictal activity. Sets Z and O have been recorded extracranially, whereas sets 
N, F and S have been recorded intracranially.  

In our analysis we use the above described dataset to create three different 
classification problems and then we tested our method with each of them. In the first 
problem, two classes are examined, normal and seizure. The normal class includes only 
the Z type EEG segments while the seizure class includes the S type. The second 
problem includes three classes, normal, seizure-free and seizure. The normal class 
includes only the Z type EEG segments, the seizure-free class the F type EEG segments 
and the seizure class the S type. In the third problem, all five classes are used, including 
all EEG segments from the initial dataset. According to the previous description, the 
datasets consist of 200, 300 and 500 EEG segments, for the three problems, 
respectively. The different problems, related to the classes which are included in the 
classification were constructed since there is different medical interest for each 
problem, i.e. it is very important to evaluate the proposed method on the classification 
of seizure and normal classes. Furthermore, these three problems are the most widely 
used in the literature and therefore we have used all three in order to be able to compare 
our approach with several others, proposed in the literature. 
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2.2 Time-frequency analysis 

The smoothed pseudo Wigner-Ville distribution (SPWVD) [24], defined as: 

( ) ( ) ( ) * 2, ,
2 2

j
xSPWVD t h s g x t x t e d dsπωττ τω τ τ

+∞ +∞ −

−∞ −∞

    = + −    
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is applied in each EEG segment. ( )x ⋅  is the signal, t  is the time, ω  is the frequency 
and ( )g ⋅  and ( )h ⋅  are window functions centred at time τ  and frequency s , 
respectively. The time window was selected to be a Hamming 64-point length window. 
The length of the frequency window is not always the same; we have tested several 
different frequency resolutions: 64, 128, 256 and 512 points length windows; results are 
presented for all them. TF analysis results in the PSD, which represents the distribution 
of the signal’s energy over the TF plane. 
 
2.3 Feature extraction 

The PSD is used to extract several features. A grid is used, based on a partition in the 
time and in the frequency axis. In the time domain three equal sized windows were used 
while, in the frequency domain, two different partitions were employed, which divide 
the frequency domain in 4 and 7 subbands. These subbands, which are not necessarily 
equal, are defined using medical knowledge about the EEG and the features that are 
expected to be found in certain frequency subbands for the specific types of EEG 
segments included in the original dataset. Both combinations, between the time 
partition and the frequency partitions are used (3x4 and 3x7). Each feature, ( ),f i j , is 
calculated as: 

( ) ( ), , ,
i j

x
t

f i j SPWVD t d dt
ω

ω ω= ∫ ∫        (2) 

where it  is the thi  time window and jω  is the thj  frequency band. Each feature 
represents the fractional energy of the signal in a specific frequency band and time 
window; thus, the total feature set depicts the distribution of the signal’s energy over 
the TF plane. Therefore, it is expected that a feature set carries sufficient information 
related to the non-stationary properties of the signal, due to the fact that each feature 
represents the total energy related to specific EEG activities (δ, θ, α and β rhythms).  

Two different feature sets are extracted, one for each TF grid. In both cases, an 
additional feature is used, which is the total energy of the signal. Therefore, each 
feature set is a 3M+1 size vector, where M is the number of frequency sub bands (4 or 
7). Thus, the size of the feature vector is 13, when 4 frequency subbands are employed, 
and 22, in the case of 7 frequency subbands. 
 

2.4 Classification 
The calculated features are fed into a feed-forward artificial neural network (ANN). 

The architecture of the neural network is the same for all problems: N inputs (N is the 
size of the feature vector), one hidden layer with 20 neurons and K outputs (K is the 
number of the classes), each of them being a real number in the interval [0,1]. The units 
in the hidden layer are sigmoid units with hyperbolic tangent as activation function, 
while the outputs are linear. Each network is trained using the standard backpropagation 
algorithm [25]. 
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3. Results 
The three classification problems, described above, are used to evaluate the proposed 

method. For each of them, all combinations between frequency resolutions (64, 128, 
256 or 512) and TF grids (3x4 or 3x7) were tested; totally 8 different combinations for 
each classification problem. The ten fold stratified cross validation method was 
employed, while the final result is the average of all of them. The size of the confusion 
matrix is KxK and therefore depends on the classification problem: 2x2 for the first 
classification problem, 3x3 for the second and 5x5 for the third. The accuracy (Acc), 
defined as: 

  {  }/ ,Acc Trace confusion matrix S=        (3) 
where S is the number of EEG segment in the dataset, can be calculated for each 
confusion matrix. The computed accuracies for all classification problems and all 
combinations between frequency resolutions and TF grids are presented in Table 1. 
Also, for each classification problem, overall results have been derived, i.e. the 
maximum and minimum accuracy (for all combinations between frequency resolutions 
and frequency subbands) as well as the average accuracy and the standard deviation. 

For the first classification problem, the best obtained accuracy is 99%, achieved for 
64 frequency resolution and 4 or 7 frequency subbands. For the second classification 
problem, the best obtained accuracy is 98.6%, achieved for 64 frequency resolution and 
7 frequency subbands. Finally, for the third classification problem, the best obtained 
accuracy is 89.4%, achieved for 256 frequency resolution and 7 frequency subbands. 
For all classification problems, the obtained accuracies of the different evaluations dο 
not vary significantly; almost 2% for all three of them. Also, the standard deviation is 
not large, being 0.76, 1.03 and 0.53, for the three classification problems, respectively. 
 

Table 1. Accuracy (%) for all classification problems, different frequency 
resolutions and TF grids. 

  Frequency resolution 
  64  128 256 512 

Total 

TF grid 3x4 3x7  3x4 3x7 3x4 3x7 3x4 3x7 min max average stdv 

1 99.0 99.0  97.8 97.8 98.8 98.0 98.4 96.8 96.8 99.0 98.20 0.76 

2 97.8 98.6  97.2 96.8 97.2 97.2 96.8 95.0 95.0 98.6 97.08 1.03 

C
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3 89.0 88.8  88.6 87.8 88.6 89.4 88.2 88.0 87.8 89.4 88.55 0.53 

 
4. Discussion 

We have proposed an automated method for seizure detection in EEG recordings. 
The method is based on TF analysis of the EEG segments and extraction of several 
features from the PSD of the signal. These features are fed into a neural network, which 
provides the classification of the EEG segments. The method is evaluated using three 
different classification problems, originated from the type of medical diagnosis which is 
followed. The effect of different parameters of the method on the classification 
accuracy is examined. Those parameters are: the frequency resolution of the TF 
analysis and the TF grid used for feature extraction. Results are presented for all the 
different combinations of them. 

The frequency resolution, used in the TF analysis, does not greatly affect the 
accuracy of the proposed method; the average accuracy of all classification problems 
with both TF grids is 95.37%, 94.33%, 94.87% and 93.87% for 64, 128, 256 and 512 
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points length windows, respectively. It is obvious that the use of 64 points length 
window slightly improves the results, while the incorporation of the 256 points length 
window has the second better results. Also, the incorporation of different TF grids did 
not have a major impact on the results; the average accuracy of all test that were made 
using 3x4 TF grid (for all classification problems and frequency resolutions) is 94.78%, 
while, in the case of 3x7 TF grid, 94.43%. 

To our knowledge, TF analysis and feature extraction, which reflect the energy 
distribution over the TF plane, have not been applied in the analysis of EEG signals. 
Moreover, the quality of the proposed method can be proven from the obtained results. 
The accuracy achieved by our method for the epileptic seizure detection is more than 
satisfactory and also its automated nature makes it suitable for real clinical conditions. 
Besides its feasibility for real-time implementation, diagnosis can be made more 
accurate by increasing the number of parameters. A system that will be developed as a 
result of this study may provide feedback to the experts for classification of the EEG 
signals quickly and accurately. 

Table 2 presents a comparison between our method and other methods proposed in the 
literature. Only methods evaluated in the same dataset are included. For the two classes’ 
problem, the results obtained from the evaluation of our method are the second best presented 
for this dataset. It is worth to mention here that a method that discriminates EEGs into non-
seizure and seizure is much closer to the expert needs. For the three classes problem, the 
results obtained from our method are the best presented for this dataset; the difference 
between our results and other results varies from 1.8%-12.7%. However, in the case of 
using the third classification problem to evaluate our method our results are not 
satisfactory, being almost 90%, while the best reported results for this dataset is 
99.28%. 

 
Table 2: The classification accuracy (%) of our method for the detection of epileptic 
seizures compared to the classification accuracies (%) obtained by other methods. 

Authors Method Dataset Accuracy
Nigam et al. [7] Nonlinear pre-processing filter-Diagnostic neural network Z, S 97.2 

Srinivasan et al. [6] Time & frequency domain features-Recurrent neural network Z, S 99.6 
Kannathal et al. [21] Entropy measures-Adaptive neuro-fuzzy inference system Z, S 92.22 
Kannathal et al. [18] Chaotic measures-Surrogate data analysis Z, S ~90 

Polat et al. [8] Fast fourier transform-Decision tree Z, S 98.72 
Subasi [11] Discrete wavelet transform-Mixture of expert model Z, S 95 
This work Time frequency analysis-Artificial neural network  Z, S 99 

Guler et al. [20] Lyapunov exponents-Recurrent neural network Z, F, S 96,79 
Sadati et al. [12]  Discrete wavelet transform–Adaptive neural fuzzy network Z, F, S 85,9 

This work Time frequency analysis-Artificial neural network Z, F, S 98.6 
Guler et al. [13] Wavelet transform-Adaptive neuro-fuzzy inference system Z, O, N, F, S 98.68 
Guler et al. [14] Wavelet transform, Lyapunov exponents-Support vector machine Z, O, N, F, S 99.28 
Übeyli et al. [26] Eigenvector methods–Modified of Mixture of expert model Z, O, N, F, S 98.60 

This work Time frequency analysis-Artificial neural network Z, O, N, F, S 89.4 
 
There are several other aspects either technical or medical which much be addressed. 

From the technical point of view, although we have examined the effect of various 
parameters (frequency resolution, TF grid), some other, like TF distributions (e.g. 
reduced interference distributions), have not been explored. From the medical point of 
view, the most important feature is that currently the method is used to characterize 
predetermined (with respect to their length) EEG segments. An important aspect is also 
the modification of the proposed method in order to be able to automatically detect 
highly suspicious segments (regardless of their length) into long time EEG recordings 
and classify them. 
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