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2. Fundamentals of constrained optimization
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Introduction

• Optimization is the problem of maximizing or min-
imizing a given function of one or more variables,
under some given constraints.

• Optimization is an important issue in many areas.
For example:

– In business: maximize profits and minimize costs.

– In engineering: maximize performance, minimize
complexity.

– In nature: many phenomena tend towards mini-
mization of energy consumption.
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Elements of optimization

• Objective.- the function to be optimized. It represents a
quantitative measurement of the performance of the system
under study.

• Variables or unknowns.- the entities or quantities which
influence the objective function. The goal is to find the un-
knowns which maximize or minimize the objective.

• Constraints.- the restrictions placed on the variables which
must hold for the solution to be considered valid.

The problem of identifying the objective, unknowns, and con-

straints for a given problem is known as modeling.
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Mathematical formulation

• In general, an optimization problem can be written as follows:

min
x∈Rn

f(x),

subject to

ci(x) = 0, for i ∈ E, ci(x) ≥ 0, for i ∈ I
where

– x is the vector of variables or unknowns.

– f(x) : Rn → R is the objective function that we want to
maximize or minimize.

– ci : Rn → R are the constraint functions which define cer-
tain equations that x must satisfy. A point x ∈ Rn which
satisfies all constraints is called feasible.

– E is the set of equality constraints.

– I is the set of inequality constraints.
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Minimization versus Maximization

• Note that maximizing f(x) is equivalent to minimiz-

ing −f(x).

• Without loss of generality, we may assume that the

objective function must always be minimized.
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Continuous versus Discrete

• Note that we are assuming that x ∈ Rn.

• In some problems, some of the variables only make

sense if they take discrete values, such as integers

or labels from a finite set.

• Discrete optimization is not covered in this course,

however, some discrete optimization problems can

often be posed as continuous optimization problems

(e.g., by considering a probability distribution over

the discrete set).
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Global versus Local optimization

• Most algorithms for nonlinear optimization search

only for a local optimum; that is, a point at which

the objective function is smaller than all other fea-

sible nearby points.

• The global solution is a point with the lowest value

of the objective function among all feasible points.

• Many successful global optimization algorithms work

by solving many local optimization problems. These

will be studied in the last part of the course.
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Stochastic versus Deterministic

• In some cases, the mathematical model of the problem cannot
be fully specified because it may depend on parameters or
conditions that are unknown at the time of formulation.

• The uncertainty about these parameters can sometimes be
described from a probabilistic point of view.

• Stochastic optimization methods incorporate this probabilistic
information to generate solutions that optimize the expected
performance of the model.

• In contrast, deterministic optimization problems are those for
which the model is completely known.
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Convexity

• A set S ⊂ Rn is said to be convex if the line segment connect-
ing any two points in S lies entirely inside S. In other words,
for any x, y ∈ S, we have that

αx+ (1− α)y ∈ S for all α ∈ [0,1].

• A function f is convex if its domain S is a convex set and if
for any x, y ∈ S we have that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0,1].

• If the objective function and the feasible region of an opti-
mization problem are both convex, then any local solution of
the problem is also a global solution.
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General problem

• Let us recall the general formulation of our optimization prob-
lem:

min
x∈Rn

f(x),

subject to

ci(x) = 0, for i ∈ E, ci(x) ≥ 0, for i ∈ I
where

– x is the vector of variables or unknowns.

– f(x) : Rn → R is the objective function that we want to
maximize or minimize.

– ci : Rn → R are the constraint functions which define cer-
tain equations that x must satisfy. A point x ∈ Rn which
satisfies all constraints is called feasible.

– E is the set of equality constraints.

– I is the set of inequality constraints.
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Feasibility

• The feasible set Ω is defined as the set of all points

x that satisfy the constraints:

Ω = {x | ci(x) = 0, i ∈ E; ci(x) ≥ 0, i ∈ I} .

• The general problem can thus be rewritten as

min
x∈Ω

f(x).

• If the feasible set is empty, the problem is said to

be infeasible.
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Solutions

• The notion of local and global solutions must now be re-
stricted to feasible points:

– A vector x̂ is a local solution if x̂ ∈ Ω and f(x) ≥ f(x̂) for
all x ∈ N ∩Ω, where N is a neighborhood of x̂.

– A vector x̂ is a strict local solution if x̂ ∈ Ω and f(x) > f(x̂)
for all x ∈ N ∩Ω.

– If a solution x̂ is the only solution in N ∩ Ω, then x̂ is an
isolated local solution.

– A vector x̂ is a global solution if x̂ ∈ Ω and f(x) ≥ f(x̂) for
all x ∈ Ω.
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Active constraints

• A constraint i ∈ E ∪I is said to be active at a point

x ∈ Ω if ci(x) = 0.

• Note that equality constraints (i ∈ E) are always

active.

• The active set A(x) at any feasible x is thus defined

as

A(x) = E ∪ {i ∈ I | ci(x) = 0}.
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Example with one equality constraint

• Consider the problem

minx1 + x2, s.t. x2
1 + x2

2 − 2 = 0.

– Write the objective function f and constraint c1.

– Plot the constraint c1 and the level curves of f . Use this
plot to find the optimum x̂.

– Find the normals (gradients) of f and c1 at x̂ and verify
that they are parallel and opposite. Note this does not
happen at any other feasible point.

• Consider the Lagrangian function for this problem, given by

L(x, λ1) = f(x)− λ1c1(x).

A necessary (but not sufficient) optimality condition for this
problem can thus be written as

∇xL(x̂, λ̂1) = 0.
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Example with one equality constraint

• Suppose we have a feasible starting point x and want to find
a step vector s such that the next iterate, x + s decreases f
and remains feasible.

• To retain feasibility we require that c1(x+ s) = 0. Applying a
first-order Taylor approximation we have

c1(x+ s) ≈ c1(x) +∇c1(x)
Ts = ∇c1(x)

Ts = 0,

which means s must be orthogonal to the normal of c1 at x.

• To produce a decrease in f , we require that

0 > f(x+ s)− f(x) ≈ ∇f(x)Ts,

or, more compactly, ∇f(x)Ts < 0, which means s must not be
on the opposite open half-plane whose normal is ∇f(x).

• Note that the only way s does not exist (e.g., when x is an
optimum) is if ∇f(x) and ∇c1(x) are parallel.
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Example with one inequality constraint

• Consider the problem

minx1 + x2, s.t. x2
1 + x2

2 − 2 ≤ 0.

Note that now c1 = 2− x2
1 − x2

2.

• Consider a feasible x. Under which conditions does a step
vector s exists such that x+s decreases f and remains feasible?
Consider two cases: (1) when x lies strictly inside the circle
(c1 is inactive) and (2) when x lies in the boundary of the
circle (c1 is active).

• Consider the Lagrangian function previously defined. Note
that the optimality conditions reduce to

∇Lx(x̂, λ̂1) = 0, λ1 ≥ 0

and

λ̂1c1(x̂) = 0.
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Example with two constraints

• Consider the problem

minx1 + x2, s.t. 2− x2
1 − x2

2 ≤ 0, x2 ≥ 0.

• Define c1(x) = 2 − x2
1 − x2

2, c2(x) = x2. This time, the La-
grangian is given by

L(x, λ) = f(x)− λ1c1(x)− λ2c2(x),

where λ = (λ1, λ2)T is the vector of Lagrange multipliers.

• The extension of the optimality conditions to this example is

There exists λ̂ ∈ R2 such that ∇xL(x̂, λ̂) = 0, λ̂ ≥ 0, λ̂Tc(x̂) = 0.

• Examine these conditions for the following points

1. x = (−
√
2,0)T ; that is, the optimum point.

2. x = (
√
2,0)T

3. x = (1,0)T
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Optimality conditions

• In the examples shown in the previous session, we
established certain conditions that must be met in
order to find a step vector s that can improve the
current solution x.

• These conditions were obtained from a first-order
(linear) Taylor approximation of the objective func-
tion and the constraints at the point x+ s.

• The logic complement of these conditions represent
a set of necessary (but not sufficient) conditions
that a local optimum x̂ must satisfy. These are
called optimality conditions.
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Feasible directions

• Given a feasible point x, a step vector d ∈ Rn is called a feasible
direction if there exist a sequence of feasible points zk → x and
a sequence of positive scalars tk → 0 such that

lim
k→∞

zk − x

tk
= d.

• Let F(x) be the set of step vectors d such that a new iterate
x+ d remains feasible according to the first-order approxima-
tion of the constraints; that is

F(x) =

d

∣∣∣∣∣∣
dT∇ci(x) = 0, i ∈ E,

dT∇ci(x) ≥ 0, i ∈ A(x) ∩ I.

 .

• F(x) is called the set of linearized feasible directions at x.
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Constraint qualifications

• In order to generalize the optimality conditions to a larger
class of constrained optimization problems, it is required that
the set of linearized feasible directions resembles the set of
true feasible directions.

• This can be ensured by establishing some qualifications for
the constraint functions.

• The most used qualification is the following: Given a point x
and the active set A(x), we say that the linear independence
constraint qualification (LICQ) holds if the set of active con-
straint gradients

{∇ci(x) | i ∈ A(x)}
is linearly independent.
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Lagrangian

• The general form of the Lagrangian function is

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x),

where λi is called the lagrange multipliers corre-

sponding to constraint ci.

• A shorter (vectorial) form of the Lagrangian is

L(x, λ) = f(x)− λT c(x).
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First order necessary conditions

• Suppose that x̂ is a local solution of the constrained minimiza-
tion problem, and that the functions f and ci are continuously
differentiable, and that the LICQ holds at x̂. Then there is
a Lagrange multiplier vector λ̂ such that the following condi-
tions are satisfied:

– ∇xL(x̂, λ̂) = 0,

– ci(x̂) = 0 for all i ∈ E,

– ci(x̂) ≥ 0 for all i ∈ I,

– λ̂i ≥ 0 for all i ∈ I,

– λ̂ici(x̂) = 0 for all i ∈ E ∪ I.

• These are also known as the Karush-Kuhn-Tucker (KKT)
conditions.
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Second order necessary conditions

• Given an optimum point x̂ and the Lagrange multiplier vector
λ̂ that satisfies the KKT conditions, we define the critical cone
C(x̂, λ̂) as

C(x̂, λ̂) =
{
d ∈ F(x̂) | dT∇ci(x̂) = 0 for all i ∈ A(x̂) ∩ I with λ̂i > 0

}
.

• In other words, the critical cone is the set of linearized feasible
directions that would tend to “adhere” to the active inequality
constraints.

• Suppose that x̂ is a local solution satisfying the LICQ con-
dition and λ̂ is the Lagrange multiplier vector which satisfies
the KKT conditions. Then

dT∇2
xxL(x̂, λ̂)d ≥ 0,

for all d ∈ C(x̂, λ̂).

• In other words, at any local optimum, the Hessian of the La-
grangian has non-negative curvature along critical directions.
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Second order sufficient conditions

• Suppose that for some feasible point x̂ ∈ Rn there is a La-
grange multiplier vector λ̂ such that the KKT conditions are
satisfied.

• Suppose also that

dT∇2
xxL(x̂, λ̂)d > 0,

for all d ∈ C(x̂, λ̂), d ̸= 0.

• Then x̂ is a strict local solution.
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Significance of Lagrange multipliers

• The value Lagrange multiplier λ̂i corresponding to constraint
ci indicates how sensitive the optimal objective value f(x̂) is
to the presence of constraint ci.

• If a constraint ci is inactive at a local optimum x̂, the corre-
sponding Lagrange multiplier must be zero. This means that
x̂ would still be a local minimum even if the constraint was
removed.

• Let x̂ be a local solution. We say that an inequality constraint
ci is strongly active or binding if i ∈ A(x̂) and λ̂i > 0 for some
λ̂ satisfying the KKT conditions.

• An inequality constraint ci is weakly active if i ∈ A(x̂) and
λ̂i = 0 for all λ̂ satisfying the KKT conditions.
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Elimination of variables

• In some cases, it is possible to use the constraints to

eliminate some of the variables from the problem,

in order to obtain a simpler problem.

• These techniques, however, must be used with care,

as they may alter the problem or introduce ill con-

ditioning.
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Example: well-applied elimination

• Consider the following problem

min f(x) = f(x1, x2, x3, x4)

subject to

x1 + x2
3 − x3x4 = 0, and − x2 + x2

3 + x4 = 0.

• Since there is no interaction between x1 and x2 in the con-
straint functions, we can set

x1 = x3x4 − x2
3, and x2 = x2

3 + x4,

to obtain a new objective function of two variables:

h(x3, x4) = f(x3x4 − x2
3, x

2
3 + x4, x3, x4),

which can be minimized using unconstrained optimization tech-
niques.
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Example: dangerously applied

• Consider now the following example:

minx2 + y2 subject to (x− 1)3 = y2.

• By plotting the constraint function, it can be seen that the
solution is (x, y) = (1,0).

• One may be tempted to eliminate y to obtain the new objec-
tive

h(x) = x2 + (x− 1)3,

however h(x) → −∞ as x → −∞, thus the new problem is
unbounded.

• The problem derives from the fact that the constraint (x −
1)3 = y2 implicitly requires that x ≥ 1. In fact, the constraint
x ≥ 1 is active at the solution.

• Therefore, if one wishes to eliminate y, then one must explic-
itly introduce the constraint x ≥ 1 into the problem.
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Linear equality constraints

• Consider the minimization of a nonlinear function subject to
a set of linear equality constraints,

min f(x) subject to Ax = b,

where A is an m× n matrix with m ≤ n with full row rank.

• We can find a subset of m linearly independent columns of
A. Let P be an n× n permutation matrix which swaps these
columns to the first m column positions in A. Then one can
write

AP = [B|N ],

where B is an m×m matrix formed by these columns and N
contains the remaining n−m columns of A.

• We can also define subvectors xB ∈ Rm and xN ∈ Rn−m so that

P Tx =

[
xB

xN

]
.

• xB are called the basic variables and B the basis matrix.
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Linear equality constraints

• Since PP T = I, the constraint Ax = b can be rewritten as

b = Ax = AP (P tx) = BxB +NxN ,

which can be rearranged into

xB = B−1b−B−1NxN .

• Therefore, the original problem is equivalent to the following
unconstrained problem

min
xN

h(xN) = f

(
P

[
B−1b−B−1NxN

xN

])
.

• This shows that a nonlinear optimization problem with linear
equality constraints is equivalent to a unconstrained problem.
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Example

• Consider the problem

min sin(x1 + x2) + x23 +
1

3

(
x4 + x45 +

1

2
x6

)
subject to

8x1 − 6x2 + x3 +9x4 +4x5 = 6

3x1 +2x2 − x4 +6x5 +4x6 = −4.

• Perform elimination of variables as described in the

previous slides. Choose the basic variables so that

the basis matrix can be easily inverted.
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Introduction

• Linear programming (LP) is the problem of finding

the optimum of a linear objective function subject

to linear equality and inequality constraints.

• LP is the most widely used method of constrained

optimization. It has vast applications in many ar-

eas such as management, economics, finance, and

engineering.
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Linear programs

• A linear program is can be usually stated in the

following standard form:

min cTx, subject to Ax = b, x ≥ 0,

where c and x are vectors in Rn, b is a vector in Rm,

and A is an m× n matrix.
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Reformulation in the standard form

• Inequality constraints of the form Ax ≤ b can be converted
to equalities by introducing a vector of slack variables z as
follows:

Ax+ z = b, z ≥ 0.

• If some of the variables are allowed to be negative, one can
split x into two parts, x = x+ − x−, where x+ = max(x,0) ≥ 0
and x− = max(−x,0) ≥ 0. The problem can thus be written
as

min

 c
−c
0

T  x+

x−

z

 , s.t. [A −A I]

 x+

x−

z

 = b,

 x+

x−

z

 ≥ 0.

• Inequality constraints of the form x ≤ u or Ax ≥ b can also be
converted to equalities by adding slack variables:

x ≤ u ↔ x+ w = u, w ≥ 0,

Ax ≥ b ↔ Ax− y = b, y ≥ 0.
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Solutions

• The objective function is clearly convex since it is linear. Its
contours are hyperplanes. The feasible region is a convex
polytope.

• A linear program can have

– No solution if the feasible region is empty (the infeasible
case).

– No solution if the objective function is unbounded below
on the feasible region (the unbounded case).

– A unique solution located at a vertex of the feasible poly-
tope.

– Infinite solutions, where the set of optimal points is an
edge, a face, or the entire feasible set.
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Optimality conditions

• Only the first-order conditions (the KKT conditions) are re-
quired for a point x to be optimal. Due to convexity, these
conditions ensure that the optimum is global.

• It can be proven that if the constraints ci(x) are all linear, then
the set of linearized feasible directions F(x) is equal to the set
of feasible directions. Therefore, the LICQ is not required for
linear programs.

• Let [λ, s]T be the vector of Lagrange multipliers, where λ ∈ Rm

are the Lagrange multipliers which correspond to the equality
constraints Ax = b, while s ∈ Rn corresponds to the bound
constraints x ≥ 0. The Lagrangian function for this problem
is therefore given by

L(x, λ, s) = cTx− λT(Ax− b)− stx.
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Optimality conditions

• The first order (Karush-Kuhn-Tucker) conditions for x̂ to be
a solution of the linear program are that there exist vectors λ̂
and ŝ such that

– AT λ̂+ ŝ = c,

– Ax̂ = b,

– x̂ ≥ 0,

– ŝ ≥ 0,

– x̂iŝi = 0, i = 1,2, . . . , n.

• These conditions can also be rewritten as

cT x̂ = (AT λ̂+ ŝ)T x̂ = (Ax̂)T λ̂ = bT λ̂.
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Geometry of the feasible set

• Without loss of generality, it can be assumed that the matrix
A has full row rank.

• A vector x is a basic feasible point if it is feasible and if there
exists a subset B of the index set {1,2, . . . , n} such that

– B contains exactly m indices.

– i /∈ B ⇒ xi = 0; that is, the bound xi ≥ 0 can be inactive
only if i ∈ B.

– The m×m matrix B defined by

B = [Ai]i∈B

is nonsingular, where Ai represents the i-th column of A.

A set B satisfying these properties is called a basis and the
corresponding matrix B is called the basis matrix.
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Geometry of the feasible set

• If the feasible region is nonempty, then there is at
least one basic feasible point.

• If the problem has solutions, then at least one so-
lution is a basic feasible point.

• The basic feasible points are vertices of the feasible
polytope {x | Ax = b, x ≥ 0}.

• A basis B is said to be degenerate if xi = 0 for some
i ∈ B, where x is the basic feasible point correspond-
ing to B. A linear program is said to be degenerate
if it has at least one degenerate basis.
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Introduction

• The simplex method is an iterative algorithm to
solve linear programs.

• All iterates of this method are basic feasible points,
and therefore vertices of the feasible polytope.

• The algorithm starts with some vertex as initial so-
lution and on most steps moves from one vertex
to an adjacent one for which the basis B differs in
exactly one component.

• On most steps, the value of the objective function
cTx is decreased.
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Variable separation

• From the KKT conditions and the basis B one can
obtain the values of the variables x, and the dual
variables (λ, s).

• Let N = {1, . . . , n} \ B be the nonbasic index set.
The nonbasic matrix N is given by N = [Ai]i∈N .

• The n-element vectors x, s and c can be partitioned
according to the sets B and N as follows:

xB = [xi]i∈B, xN = [xi]i∈N
sB = [si]i∈B, sN = [si]i∈N
cB = [ci]i∈B, cN = [ci]i∈N
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Variable separation

• The second KKT condition states that

Ax = BxB +NxN = b.

• Suppose x is a basic feasible point. By definition, xN = 0,
therefore xB = B−1b. Clearly, the nonnegativity condition x ≥
0 is also satisfied.

• s is chosen to satisfy the complementarity condition xisi = 0
by setting sB = 0.

• The first KKT condition can be partitioned into

BTλ = cB, NTλ+ sN = cN ,

from which λ = B−TcB and

sN = cN −NTλ = cN − (B−1N)TcB.
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Change of basis

• The only KKT condition which has not been explicitly en-
forced is s ≥ 0. Our choice for xB satisfies this condition. If
the vector sN ≥ 0, then an optimal solution has been found.

• If one or more of the components of sN is negative, we chose
one of their corresponding indexes q in N (for which sq < 0)
to enter the basis B. This is called the entering index.

• It can be shown that the objective cTx will decrease if and
only if

1. sq < 0, and

2. xq can be increased away from zero while maintaining fea-
sibility.

• Since the size of B must remain constant, including q in B
requires one of the indices p ∈ B to leave the basis.
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Pivoting

• The process of selecting the entering index q and the leaving
index p is known as pivoting. This process is described as
follows:

1. Choose q ∈ N such that sq < 0, and allow xq to increase
from zero.

2. Fix all other components of xN at zero, and figure the
effect of increasing xq on the current basis vector xB, con-
sidering that we want to stay in the feasible region deter-
mined by the equality constraints Ax = b.

3. Keep increasing xq until one of the components of xB (say,
xp) becomes zero, or until one determines that no such
component exists (the unbounded case).

4. Remove index p (the leaving index) from B and replace it
with the entering index q.
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Pivoting

• Let x be the current solution and x̃ be the new iterate. Since
Ax = Ax̃ = b and xN = 0 and x̃i = 0 for i ∈ N \ {q}, then

Ax̃ = Bx̃B +Aqx̃q = BxB = Ax.

Multiplying by B−1 and rearranging we obtain

x̃B = xB −B−1Aqx̃q.

• Increasing xq eventually leads a new constraint xp ≥ 0 to be-
come active, unless the problem is unbounded. In this case
x̃B = xB −B−1Aqx̃q ≥ 0 holds for all positive values of x̃q. This
happens when B−1Aq ≤ 0.
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The Simplex method

• Given B, N , xB = B−1b ≥ 0, and xN = 0:

• Solve BTλ = cB for λ.

• Compute sN = cN −NTλ.

• If sN ≥ 0, terminate the algorithm and return x as the optimal point.

• Select q ∈ N with sq < 0 (the entering index).

• Solve Bd = Aq for d.

• If d ≤ 0, terminate the algorithm since the problem is unbounded.

• Calculate x̃q = mini|di>0(xB)i/di and let p denote the minimizing i.

• Update x̃B = xB − dx̃q, x̃N = (0, . . . ,0, x̃q,0, . . . ,0)T .

• Change B by adding q and removing the basic variable corresponding to
column p of B.
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Example

• Solve the problem

min −4x1 − 2x2

subject to

x1 + x2 + x3 = 5,
2x1 + 1

2x2 + x4 = 8,
x ≥ 0.

using B = {3,4} as initial basis. Note that the

solution is x = (11/3,4/3,0,0).
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Selection of the entering index

• Usually, there are many negative components of sN
at each step. The selection of the entering index

among these components may have a significant

impact in the convergence speed of the simplex

method.

• Many strategies for selecting the entering index have

been devised. However, the computational cost of

finding a good entering index might be sometimes

higher than simply taking a longer path towards the

optimum.
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Selection strategies

• Dantzig’s rule.- Choose q such that sq is the most negative
component of sN = NTλ.

• Partial pricing.- Calculate only a subvector of sN and select
q among the negative components of the subvector. To give
all indices in N a chance to enter the basis, this strategy must
cycle through all the non-basic elements.

• Multiple pricing.- Evaluate sq for all q in a small subset
S ⊂ N and for each sq < 0 find the maximum value of x̃q

which maintains feasibility and the corresponding change in
the objective given by sqx̃q. The process is repeated until sq
are nonnegative for all q ∈ S. Then sN is computed and a new
subset S is chosen.
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Finding an initial basic solution

• Finding an initial basis is usually a non-trivial problem and its
difficulty is equivalent to solving a linear program.

• Most implementations use a two-phase approach where the
first phase consists in solving a linear program specifically de-
signed to find an initial solution for the original problem, which
is then solved in phase 2.

• The Phase I problem is as follows:

min eTz, subject to Ax+ Ez = b, x ≥ 0, z ≥ 0,

where z ∈ Rm, e = (1,1, . . . ,1)T , and E is a diagonal matrix
whose elements are Ejj = 1 if bj ≥ 0 and Ejj = −1 if bj < 0.
It is easy to see that the point given by x = 0, zj = |bj| is a
basic feasible solution for this problem (the initial basis matrix
is B = E).

• The Phase I problem has an optimal solution (x̂, ẑ) with ẑ = 0
if and only if the original problem has at least one feasible
point.
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Finding an initial basic solution

• The Phase II problem is given by

min cTx, subject to Ax+ z = b, x ≥ 0, 0 ≥ z ≥ 0.

• Note that (1) this problem is equivalent to the original prob-
lem, since z is constrained to be zero at all times, and (2) the
solution (x̂, ẑ) of the Phase I problem is a basic feasible point
for the Phase II problem (with the same basis as in the Phase
I problem).

• The simplex implementation for Phase II can delete those
components of z which leave the basis (and their correspond-
ing columns in the coefficient matrix) in order to increase the
efficiency and robustness of the procedure.
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Quadratic programs

• A quadratic program (QP) is an optimization prob-
lem with a quadratic objective function and linear
constraints. The general form of a QP is

minx q(x) = 1
2x

TGx+ xT c

subject to aTi x = bi, i ∈ E,
aTi x ≥ bi, i ∈ I.

• If the Hessian matrix G is positive semidefinite, the
QP is said to be convex and it is similar in difficulty
to a linear program. On the other hand, nonconvex
QPs, in which G is an indefinite matrix, can have
several stationary points and local minima.
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Equality-constrained quadratic programs

• A special case of QPs is obtained when there are
no inequality constraints. In this case, the problem
can be stated as follows:

min q(x) =
1

2
xTGx+ xT c, subject to Ax = b,

where A is an m × n Jacobian matrix of the con-
straints. This matrix can be assumed to have full
row rank (rank m).

• Although this sub-class of QPs seems very limited,
we will later see that some algorithms for general
QPs require to solve an equality-constrained QP at
each iteration.
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Null space of the constraint Jacobian

• Without loss of generality, one can assume that the first m
columns of A are linearly independent, so that the matrix A
and the variable vector x can be expressed as

A = [B | N ], x =

[
xB

xN

]
,

where B is a basis matrix, N is the non-basic matrix, xB are
the basic variables, and xN the non-basic variables.

• Recall also that xB can be expressed in terms of xN :

xB = B−1b−B−1NxN .

• Therefore, the variable vector x can be written as

x = Y b+ ZxN , Y =

[
B−1

0

]
, Z =

[
−B−1N

I

]
.

• The matrix Z has n − m linearly independent columns and
satisfies AZ = 0, therefore, Z is a basis for the null space of
A.
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First-order necessary conditions

• The KKT conditions for x̂ to be a solution of the equality-
constrained QP state that there exists a vector λ̂ of Lagrange
multipliers such that the following equation is satisfied:[

G −AT

A 0

] [
x̂
λ̂

]
=

[
−c
b

]
.

• Expressing the solution as x̂ = x+p where x is some estimate
of the solution and p is the required step vector, the system
above can be rewritten as[

G AT

A 0

] [
−p
λ̂

]
=

[
Gx+ c
Ax− b

]
.

• The matrix K =

[
G AT

A 0

]
is called the Karush-Kuhn-Tucker

(KKT) matrix.
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Nonsingularity of the KKT matrix

• If A has full row rank and the reduced-Hessian matrix ZTGZ
is positive definite, then the KKT matrix

K =

[
G AT

A 0

]
is nonsingular, and hence the equality-constrained QP has a
unique solution (x̂, λ̂).

• Moreover, if the above conditions are satisfied, then x̂ is a
unique global solution of the equality-constrained QP.

• When the reduced Hessian ZTGZ is positive semidefinite with
zero eigenvalues, the vector x̂ satisfying the KKT system is a
local minimizer but not a strict local minimizer. If the reduced
Hessian has negative eigenvalues, when x̂ is only a stationary
point, but not a local minimizer.
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Indefiniteness of the KKT matrix

• Let us recall that the solution of the equality-constrained
quadratic program

min q(x) = xTGx+ xTc, subject to Ax = b,

where A is an m× n matrix with rank m, can be obtained as
x̂ = x+ p, where x is an initial solution, and p is a step vector
which must satisfy the KKT system

K

[
−p
λ̂

]
=

[
Gx+ c
Ax− b

]
,

where the KKT matrix K is given by

K =

[
G AT

A 0

]
.

• It can be proven that if ZTGZ is positive definite, then K is
indefinite for all m ≥ 1, therefore, the KKT system cannot be
solved using Cholesky factorization.
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Solutions for symmetric Hessian

• If the Hessian matrix G is symmetric, then the KKT matrix K
is also symmetric. In this case, K has a factorization of the
form

P TKP = LTLT ,

where P is a permutation matrix, L is a lower triangular ma-
trix, and T is a symmetric tri-diagonal matrix made from either
1× 1 or 2× 2 blocks.

• Once the factorization is obtained, the solution [p, ˆlambda]T

can be obtained from the following sequence of operations:

1. Solve Lz1 = P T

[
Gx+ c
Ax− b

]
to obtain z1.

2. Solve Tz2 = z1 to obtain z2.

3. Solve LTz3 = z2 to obtain z3.

4. Let [−p, λ̂]T = Pz3.

The solution of Tz2 = z1 requires solving a number of smaller
1× 1 and 2× 2 systems.
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Schur-Complement Method

• Consider the case where the Hessian matrix G is symmetric
and positive definite.

• Multiplying the first equation of the KKT system by AG1 and
substituting the second equation one can obtain a linear sys-
tem for λ̂ alone:

(AG−1AT)λ̂ = (AG−1g − h).

Since G is symmetric and positive definite, then AG−1AT is also
symmetric positive definite, and therefore the system can be
solved efficiently for λ̂ using Cholesky decomposition.

• Once λ̂ is known, p can be recovered from the first equation
by solving

Gp = AT λ̂− g

also using Cholesky decomposition.
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Null-space method

• Suppose the matrices Y and Z (slide 63) are known. Then, p
can be partitioned into two components pY and pZ such that
p = Y pY + ZpZ.

• Substituting p into the second equation of the KKT system,
and recalling that AZ = 0, we obtain (AY )pY = b−Ax.

• Since A has rank m and [Y |Z] is a nonsingular n × n matrix,
then the product A[Y |Z] = [AY |O] has rank m. Therefore AY
must be a nonsingular m × m matrix and pY can be uniquely
determined.

• Substituting p into the first equation of the KKT system yields

−GY pY −GZpZ +AT λ̂ = Gx+ c.

Multiplying by ZT and rearranging one obtains

(ZTGZ)pZ = −ZTGY pY − ZT(Gx+ c),

which can be efficiently solved for pZ by performing a Cholesky
decomposition of the reduced-Hessian ZTGZ.
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Inequality-constrained quadratic programs

• Consider the general quadratic program:

minx q(x) = 1
2
xTGx+ xTc

subject to aTi x = bi, i ∈ E,
aTi x ≥ bi, i ∈ I.

• The Lagrangian function for this problem is

L(x, λ) =
1

2
xTGx+ xTc−

∑
i∈I∪E

λi(aiTx− bi).

• The active set A(x) is given by

A(x) = {i ∈ E ∪ I | aTi x = bi}.

• We will limit our study to convex QPs; that is, QPs for which
G is positive definite.

72



Active-set methods for convex QPs

• Suppose the optimal solution x̂ is unknown, but the
optimal active set A(x̂) is known in advance. In this
case, one could find the solution x̂ by solving the
following equality-constrained QP:

min
x

q(x) =
1

2
xTGx+xT c, subject to aTi x = bi, i ∈ A(x̂).

• Therefore, one of the main challenges in solving
general QPs is determining the optimal active set.

• Active set methods start with an initial guess of
A(x̂) and use gradient and Lagrange multiplier in-
formation to include and exclude indices from A(x̂)
until optimality is detected.
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Active-set for QP vs Simplex

• The simplex method used for solving linear pro-

grams is one example of an active-set method.

• The current guess for A(x) in the simplex method

is union of the set of non-basic indices N and E.

• Active-set methods for QPs differ from the sim-

plex method in that the iterates and the optimal

solution are not necessarily vertices of the feasible

region. Therefore, the size of the active set is not

necessarily constant.
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Working set

• At each step of the active-set method, one must solve a
quadratic sub-problem in which some of the inequality con-
straints, along with the equality constraints, are imposed as
equalities, and the other inequality constraints are disregarded.

• The set of imposed equality constraints for the sub-problem
is known as the working set, and is denoted by Wk for the
k-th iterate xk.

• One important requirement that must be satisfied is that the
gradients ai of the constraints in Wk should be linearly inde-
pendant, even if the full set of active constraints at xk has
linearly dependant gradients.
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Quadratic sub-problems

• Consider an iterate xk and the working set Wk, and suppose xk

does not minimize q in the subspace defined by the constraints
in the working set.

• To improve the current solution, one can solve an equality
constrained QP where the constrains in Wk are imposed as
equalities. The solution x of this problem can be expressed in
terms of a step vector p such that x = xk + p, so that

q(x) = q(xk + p) =
1

2
pTGp+ gtkp+ ρk,

where gk = Gxk+ c and ρk = 1
2
xT
kGxk+ cTxk. Since ρk does not

depend on p, we can remove it from the objective function
without affecting the solution of this sub-problem.

• Therefore, the problem to solve at the k-th iteration is

min
p

1

2
pTGp+ gTk p, subject to aTi p = 0, i ∈ Wk.

• The solution of this problem will be denoted by pk.
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Computing the next iterate

• If the optimal pk obtained from the k-th sub-problem is nonzero,
then moving along the direction pk will improve the objective.

• If xk + pk is feasible (with respect to all the constraints), then
we set xk+1 = xk + pk; otherwise, we set

xk+1 = αkpk,

where αk is the largest value in [0,1] for which all constraints
are satisfied. This value can be computed as

αk = min

(
1, min

i/∈Wk, aT
i pk<0

bi − aTi xk

aTi pk

)
.

• The constraints i for which the minimum in the right-hand side
of the previous equation is achieved are called the blocking
constraints.

• If αk < 1, the step along pk was blocked by some constraint
not in Wk. A new working set Wk+1 is constructed by adding
one of the blocking constraints to Wk.
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Detecting optimality

• The algorithm continues iterating as previously shown until
an iterate x̂ minimizes q over the current working set; in other
words, until the solution of the sub-problem is p = 0.

• In this case, p = 0 satisfies the second equation of the KKT
system, and the first equation amounts to

∑
i∈Ŵ aiλ̂i = Gx̂+c.

• If one sets the Lagrange multipliers corresponding to inequal-
ity constraints not in Ŵ to be zero, then x̂ and λ̂ satisfy the
first KKT condition for the original QP with inequality con-
straints. Because of the control imposed on the step length,
x̂ also satisfies the 2nd and 3rd (feasibility) KKT conditions.

• If the Lagrange multipliers λ̂i for i ∈ Ŵ∩I are all non-negative,
then the fourth KKT condition is also satisfied and x̂ is a
global solution of the original QP (due to the QP being con-
vex).

• If one or more multipliers λ̂j, j ∈ Ŵ ∩ I are negative, the
objective function may be further decreased by removing one
of these indices from the working set and solving a new sub-
problem.
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Active-set algorithm

• Compute a feasible starting point x0 and set W0 to be a subset
of the active constraints at x0.

• For k = 0,1,2, . . .

– Solve the equality-constrained sub-problem to find pk.

– If pk = 0

∗ Compute the Lagrangian multipliers that satisfy
∑

i∈Wk
aiλ̂i =

Gxk + c.

∗ If λ̂i ≥ 0 for all i ∈ Wk∩I, stop with xk as global solution.

∗ Else, let j = argmini∈Wk
λ̂i, xk+1 = xk, and Wk+1 =

Wk \ {j}.

– Else

∗ Compute αk as given in slide 77, and let xk+1 = xk+αkpk.

∗ If there are blocking constraints (αk < 1), obtain Wk+1
by adding one of the blocking constraints to Wk; other-
wise, let Wk+1 = Wk.
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Gradient projection method

• In contrast to the active sets method, the gradient projection
method allows the active set to change rapidly at each itera-
tion. It is most efficient when the constraints are simple, for
example, when there are only bounds on the variables.

• Consider the bound-constrained quadratic problem;

min
x

q(x) =
1

2
xTGx+ xTc, subject to l ≤ x ≤ u,

where G is symmetric and l and u are vectors of lower and
upper bounds on the components of x, with li < ui for all i.
In this case, we do not require G to be positive definite (i.e.,
the problem can be non-convex).

• If one of the variables is unbounded, we set the corresponding
component of l or u to −∞ or +∞, respectively.
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General idea

• Each iteration of the gradient projection method consists of
two stages.

• Let x be the current solution. In the first stage, one searches
along the direction of steepest descent −g, where g = Gx+ c.
When a bound is encountered, the search direction is bent so
that it stays feasible. This results in a piecewise linear path
along which the minimizer xc of q is searched. This minimizer
is known as the Cauchy point.

• In the second stage, the working set is now defined as the
set of constraints active at xc, and then solve a subproblem in
which the variables involved in the active constraints are fixed
at their corresponding values in xc.
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Projected descent path

• The projection P (x, l, u) of an arbitrary point x onto the fea-
sible region can be defined as follows. The i-th component
of the projection is given by

P (x, l, u)i =

 li if xi < li,
xi if li ≤ xi ≤ ui,
ui if xi > ui.

• The piece-wise linear path obtained by projecting the steepest
descent direction at x onto the feasible region is x(t) = P (x−
tg, l, u).
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Path segments

• To find the Cauchy point, one must find the first local min-
imizer of q along this path; that is, the first local minimizer
of the univariate function q(x(t)). Since this function is only
piecewise differentiable, one must find first the singular points;
that is, those points along the steepest descent direction
where each bound becomes active. These are given by

t̄i =

 (xi − ui)/gi if gi < 0 and ui < +∞,
(xi − li)/gi if gi > 0 and li > −∞,
∞ otherwise.

• To search for the first local minimizer along x(t), we elimi-
nate the duplicate values and zero values of t̄i and order the
remaining values increasingly to obtain a reduced, sorted set
{t1, t2, . . . , tm} with t0 = 0 < t1 < t2 < . . . < tm. Each segment
[tk−1, tk] must be examined in succession to determine if it
contains a local minimizer.
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Minimization of each segment

• Suppose the next segment to examine is [tj−1, tj]. We have
that

x(t) = x(tj − 1) + (∆t)pj−1,

where ∆t = t− tj−1 ∈ [0, tj − tj−1] and

pj−1
i =

{
−gi if tj−1 < t̄i,
0 otherwise.

• Then, the objective function along the segment can be written
as

q(x(t)) = fj−1 + f ′
j−1∆t+

1

2
f ′′
j−1(∆t)2, ∆t ∈ [0, tj − tj−1],

where

fj−1 = cTx(tj−1) +
1
2
x(tj−1)TGx(tj−1),

f ′
j−1 = cTpj−1 + x(tj−1)TGpj−1,

f ′′
j−1 = (pj−1)TGpj−1.
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Solution of the quadratic polynomial

• The solution of the quadratic univariate objective function for
interval [tj−1, tj],

q(x(t)) = fj−1 + f ′
j−1∆t+

1

2
f ′′
j−1(∆t)2, ∆t ∈ [0, tj − tj−1],

is given by ∆t̂ = −f ′
j−1/f

′′
j−1.

• The following cases may occur

1. If f ′
j−1 > 0 there is a local minimizer of q(x(t)) at t = tj−1

2. If ∆t̂ ∈ [0, tj − tj−1) there is a minimizer at t = tj−1 +∆t̂.

3. In any other case, the minimizer of q(x(t)) does not belong
to the current segment, so we move on to the next interval
[tj, tj+1] and continue the search.
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Subspace minimization

• Once the Cauchy point xc has been found, the active set at
this point is defined by

A(xc) = {i | xc
i = li or xc

i = ui}.

• The second stage of the gradient projection method consists
in approximately solving the QP obtained by fixing the com-
ponents xi for i ∈ A(xc) at the values xc

i. This subproblem
can be formulated as

minx q(x) = 1
2
xTGx+ xTc,

subject to xi = xc
i , i ∈ A(xc),

li ≤ xi ≤ ui, i /∈ A(xc).

• It is not necessary to solve this problem exactly (particularly
since this subproblem may be as difficult as the original). It is
only required that the solution x̃ of this subproblem is feasible
and satisfies q(x̃) ≤ q(xc).

• For example, one could eliminate the inequality constraints in
the subproblem and apply an unconstrained iterative method
to solve the resulting problem, and terminate as soon as a
bound li ≤ xi ≤ ui, i /∈ A(xc) is encountered.
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Gradient projection algorithm

• Compute a feasible starting point x0.

• For k = 0,1,2, . . .

– If xk satisfies the KKT conditions, stop with x̂ = xk as
solution.

– Otherwise, set x = xk and find the Cauchy point xc.

– Find an approximate solution x̃ in the subspace defined by
the active constraints A(xc) at xc such that q(x̃) ≤ q(xc)
and x̃ is feasible.

– Set xk+1 = x̃.
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Introduction

• Penalty methods attempt to solve a constrained optimization
problem by replacing the original problem with a sequence
of sub-problems in which the constraints are represented by
terms added to the objective. Each of the sub-problems can
be solved by common unconstrained techniques.

• The most common penalty terms are:

– Quadratic penalty: The penalty terms are the squares
of the violations of each constraint (e.g., c2i (x) for i ∈ E).

– Nonsmooth exact penalty: Often represented as the
ℓ1 norm of the violations.

– Augmented Lagrangian:
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Quadratic Penalty for equality-constrained
problems

• Consider the equality-constrained problem

min
x

f(x), subject to ci(x) = 0, i ∈ E.

• The quadratic penalty function Q(x, µ) for this formulation is
defined as

Q(x, µ) = f(x) +
µ

2

∑
i∈E

c2i (x),

where µ > 0 is the penalty parameter.

• By driving µ → ∞, we penalize the constraint violations with
increasing severity and force the minimizer of Q(x, µ) closer
to the feasible region of the original constrained problem.

• The quadratic penalty method considers a sequence of values
{µk} where µk → ∞ as k → ∞, and searches for an approximate
minimizer xk of Q(x, µk) for each k. Since Q is smooth, one
can use most unconstrained optimization techniques.
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Quadratic Penalty for inequality constraints

• For the general constrained problem

min
x

f(x), subject to ci(x) = 0, i ∈ E, ci(x) ≥ 0, i ∈ I,

the quadratic penalty function can be defined as

Q(x, µ) = f(x) +
µ

2

∑
i∈E

c2i (x) +
µ

2

∑
i∈I

(
[ci(x)]

−)2 ,
where [y]− = max(−y,0).

• In this case, Q(x, µ) may be nonsmooth so more sophisticated
unconstrained minimization methods may be required.
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Quadratic Penalty Algorithm

• Given µ0 > 0, a starting point xs
0, and a nonnegative sequence

{τk} such that τk → 0,

• For k = 0,1,2, . . .

– Find an approximate minimizer xk of Q(x, µk) using xs
k as

starting point, and terminating when ||∇xQ(x, µk)|| ≤ τk.

– If final convergence test is satisfied, then stop with ap-
proximate solution xk.

– Otherwise, choose a new penalty parameter µk+1 > µk and
a new starting point xs

k+1 (e.g., xs
k+1 = xk).

• Note that, as µk becomes large, the minimization of Q(x, µk)
may become more difficult since the Hessian ∇2

xxQ(x, µk) be-
comes ill conditioned (i.e., it becomes arbitrarily large).
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Motivation

• One disadvantage of sequential penalty methods (such as the
quadratic penalty method) is that theoretically they need to
solve an infinite number of unconstrained optimization prob-
lems to guarantee feasibility.

• In practice, one can project the solution to the feasible region;
however, a large number of iterations may still be required.

• In contrast, exact penalty methods avoid this long sequence
by using exact penalty functions. A penalty function is exact
if the solution of the penalty problem is also a solution of the
original problem for a finite value of the penalty parameter µ.

• The disadvantage of using exact penalty functions is that they
are not differentiable.
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Exact penalty functions

• The most common exact penalty function is the ℓ1 norm of the
constraint violations. In this case, the new objective function
may be defined as

Q1(x, µ) = f(x) + µ
∑
i∈E

|ci(x)|+ µ
∑
i∈I

[ci(x)]
−.

• Note that we can define cE(x) as the vector whose components
are ci(x), i ∈ E and [cI(x)]− as the vector whose components
are [ci(x)]−, i ∈ I. Therefore,

Q1(x, µ) = f(x) + µ||cE(x)||1 + µ||[cI(x)]−||1,
where || · ||n denotes the ℓn norm.

• In general, any vector norm can be used (with varying results)
to measure infeasibility.
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Classical ℓn penalty method

• Define the infeasibility measure

hn(xk) = ||cE(x)||n + ||[cI(x)]−||n
and the new objective function Qn(x, µ) = f(x) + µhn(x).

• Given µ0 > 0, tolerance τ > 0, and a starting point xs
0:

• For k = 0,1,2, . . .

– Find an approximate minimizer xk of Qn(x, µk), starting at
xs
k. Note that this step may require the use of uncon-

strained optimization methods that do not rely on deriva-
tive information.

– If hn(xk) ≤ τ , stop with approximate solution xk.

– Otherwise, choose a new penalty parameter µk+1 > µk,
and a new starting point xs

k+1.
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A practical ℓ1 penalty method

• One alternative to using non-differentiable optimization con-
sists on approximating the problem with a simpler model. For
example, one can linearize the constraints ci(x) and replace
the original objective function f by a quadratic approximation
around an initial point x. The resulting penalty function is

q(p, µ) = f(x)+∇f(x)Tp+
1

2
pTWp+µ

∑
i∈E

|ci(x)+∇ci(x)
Tp|+µ

∑
i∈I

[ci(x)+∇ci(x)
Tp]−,

where W is a symmetric matrix which contains second deriva-
tive information about f and ci.

• By introducing artificial variables ri, si, and ti, it is possible to
reformulate the problem of minimizing q as a smooth quadratic
programming problem:

min
p,r,s,t

f(x) +
1

2
pTWp+∇f(x)Tp+ µ

∑
i∈E

(ri + si) + µ
∑
i∈E

ti,

subject to

∇ci(x)
Tp+ ci(x) = ri − si, i ∈ E,

∇ci(x)
Tp+ ci(x) ≥ −ti, i ∈ I,

r, s, t ≥ 0.
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Augmented Lagrangian for Equality-Constrained
Problems

• Consider again the equality-constrained problem

min
x

f(x), subject to ci(x) = 0, i ∈ E.

• The augmented Lagrangian function LA(x, λ, µ) com-

bines the Lagrangian and the quadratic penalty func-

tion. In this case, it is given by

LA(x, λ, µ) = f(x)−
∑
i∈E

λici(x) +
µ

2

∑
i∈E

c2i (x).
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Minimization of the augmented Lagrangian

• Minimization of LA(x, λ, µ) must be performed with respect to
x and λ.

• One possibility is to use a two-stage algorithm. Given the
value of the penalty parameter µk > 0, in the first stage, the
value of λ is fixed at the current estimate λk, and one performs
minimization with respect to x.

• Suppose xk is the approximate minimizer of LA(x, λk, µk), the
optimality conditions for unconstrained optimization require
that

0 ≈ ∇xLA(xk, λ
k, µk) = ∇f(xk)−

∑
i∈E

[
λk
i − µkci(xk)

]
∇ci(xk).

• By comparing with the first optimality condition for the orig-
inal problem, one can deduct that the optimal Lagrange mul-
tipliers λ̂ are λ̂i ≈ λk

i − µkci(xk), for all i ∈ E.

• This suggests the following formula to update the Lagrange
multiplier vector (second stage):

λk+1
i = λk

i − µkci(xk), for all i ∈ E.
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Augmented Lagrangian algorithm

• Given µ0 > 0, tolerance τ0 > 0, and an initial solution xs
0, λ

0.

• For k = 0,1,2, . . .

– Find an approximate minimizer xk of LA(x, λk, µk), starting
at xk. Terminate when ||∇xLA(xk, λ

k, µk)|| ≤ τk.

– If the algorithm has converged, stop with xk as approxi-
mate solution.

– Otherwise, update the Lagrange multipliers: λk+1
i = λk

i −
µkci(xk), for all i ∈ E.

– Update the penalty parameter µk+1 > µk, and select toler-
ance τk+1.

– Set the starting point for the next iteration: xs
k+1 = xk.
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Inequality-constrained problems

• Given a general nonlinear program, one can convert it to a
problem with equality and bound constraints by introducing
slack variables si and replacing the inequalities ci(x) ≥ 0, i ∈ I
by

ci(x)− si = 0, si ≥ 0, for all i ∈ I.
Of course, bound constraints in the original problem need not
be transformed.

• This reformulation allows us to write any nonlinear program
as follows:

min
x∈Rn

f(x), subject to ci(x) = 0, i = 1, . . . ,m, l ≤ x ≤ u,

where the slack variables have been incorporated into the un-
known vector x, and l and u denote the lower and upper
bounds (some components of l may be set to −∞ and some
of u to +∞).
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Bound-Constrained Augmented Lagrangian

• The bound-constrained Lagrangian (BCL) incorporates only
the equality constraints from the previous formulation into the
augmented Lagrangian:

LA(x, λ, µ) = f(x)−
m∑

i=1

λici(x) +
µ

2

m∑
i=1

c2i (x).

• The bound constraints are enforced in the subproblem, which
has the following form:

min
x

LA(x, λ, µ), subject to l ≥ x ≥ u.

Once this problem has been solved approximately, the mul-
tipliers λ and the penalty coefficient µ are updated and the
process is repeated.

• One way to solve a nonlinear problem with bound constraints
(for fixed λ and µ) consists in approximating the objective
function with a quadratic model around the current solution
xk, and using the quadratic gradient projection method to
improve the solution.
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