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Abstract

In this thesis we propose a new methodology for the study of phase syn-
chronization in electroencephalographic signals. This methodology attempts to
overcome some of the drawbacks found in the procedures typically used in the
literature by using (1) sinusoidal quadrature filters, which give a more reliable
response when tuned at low frequencies, (2) instantaneous in-phase synchrony
measures, (3) a Bayesian classification approach to determine the significance
of the synchrony changes with respect to a neutral condition, and (4) a time-
frequency-topography (TFT) visualization system which can display the results
with high spatial, temporal, and frequency resolutions. All these techniques are
implemented in a software program which has already been used by neuroscien-
tists to analyze various psychophysiological experiments. We have also tested
our methodology with various of the synchrony measures proposed in the liter-
ature, and performed a comparative study which highlights the advantages and
disadvantages of each one. Finally, we propose a simple mathematical model
for the narrow-band EEG signal observed at each electrode, which allows one
to explain and simulate different synchronization patterns that can be observed
with real EEG data.
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Chapter 1

Introduction

1.1 Introduction to EEG

Electroencephalography (EEG) is a neuroimaging technique that consists of volt-
age measurements recorded by one or more electrodes placed on the scalp (non-
invasive EEG), or within the cortex (intracranial EEG). The first person to
obtain an EEG recording from a human brain was Hans Berger, in the 1920’s.
He was also the first to observe the cyclic nature of the EEG and the relation
between different states of consciousness (e.g. sleep, attention processes, wake-
fulness, etc.) and specific EEG wave patterns, especially in the frequency range
from 8 to 12 Hz (alpha range) [Berger, 1929]. Figure 1.1 shows one of the EEG
recordings obtained by Berger.

Although there are some recent intracranial studies (e.g. [Lachaux et al.,
2000a]), most human EEG recordings are non-invasive: the electrodes are moun-
ted in a cap, which is put in the subject’s head. The electrodes are usually sys-
tematically distributed across the scalp surface; the most widely used distribu-
tion corresponds to the 10-20 international electrode placement system (shown
in Figure 1.2). This system standardizes the electrode positions and nomen-
clature, and also allows researchers to compare their analysis and visualization

Figure 1.1: One of the first human electroencephalograms (Berger, circa 1929):
the top trace is the EEG recording and the bottom trace is a 10 Hz reference
signal.
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Figure 1.2: The International 10-20 electrode placement system. This diagram
is copyrighted by the Immrama Institute (www.immrama.org) and used with
permission.

techniques.

1.2 EEG applications

There are numerous applications of EEG in modern medicine. Some examples
are:

• Study of the properties of neural networks - By properly designing
an experiment and adequate analysis of the EEG recordings, scientists
may obtain insights about neural activity and/or prove certain hypotheses
which are specifically related to the task performed by the subjects.

• Diagnostic - EEG is used in brain-mapping for localizing the areas of
epileptic activity prior to operation.

• Therapy - Neurofeedback consists of the self-modification of electrophys-
iological brain patterns. It may be used to treat psychological and neuro-
logical disorders, and also to learn mental relaxation.

We will focus on the first application, in which a psychophysiological exper-
iment is designed, performed, and analyzed, in order to study the brain activity
during the experiment. Most EEG experiments involve multiple subjects, and
each subject performs the experiment multiple times. Each repetition of the ex-
periment is called a trial, and the recorded data can be seen as a set of voltage
time series Vj,e(t) where j is the trial number, e is the index of the recording
channel or electrode (representing the spatial position of the sensors), and t is
the time index.
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A wide range of psychophysiological experiments follow this scheme: each
subject is presented with an stimulus (e.g. a certain image in a screen, a sound
or a word, etc.) and is instructed to respond in some way (e.g. press a button)
or perform a certain task (e.g. add two numbers, memorize a set, etc). EEG
is recorded during the experiment, one segment per trial. Each segment starts
before the stimulus presentation and finishes after the subject has responded.
Thus each segment is commonly split in two parts: the pre-stimulus segment
corresponding to the recording before the stimulus onset, and the post-stimulus
segment, which contains all activity after the stimulus. In these experiments, one
usually performs a statistical comparison between both pre and post-stimulus
segments, in order to detect significant changes in the neural activity which may
be related to the task performed by the subjects.

1.3 Analysis of EEG signals

In order to obtain information about the neural events taking place during the
experiment, different types of analysis may be performed with the EEG data.
These usually involve time-frequency decomposition techniques and statistical
tools. Here we describe the most common types of analysis found in the litera-
ture.

1.3.1 Evoked potentials

Evoked activity corresponds to EEG changes which are time-locked and phase-
locked to the stimulus [Pfurtscheller and Lopes da Silva, 1999]. This activity is
usually obtained, for each recording channel, by averaging the recorded poten-
tials across all trials:

EPe(t) =
1

Nr

Nr∑

j=1

Vj,e(t). (1.1)

Here Nr is the number of trials, and EPe represents the evoked activity at
electrode e. These averaged signals may show significative peaks (called event-
related potentials or ERP’s) which may be related to the task. ERP’s are named
according to their latency with respect to the stimulus onset (in milliseconds),
and the letter N or P indicating its sign. For example, P300 denotes a positive
evoked potential taking place around 300 ms after the stimulus.

1.3.2 Power analysis

One of the most common tools used for EEG analysis consists on a spectral
power decomposition at the frequency bands of interest. It is known that certain
frequency bands are related to different states of attention and consciousness
(see [Niedermeyer, 2004], Chapter 3); for example, the power ratio between
certain pairs of bands may be used for neurofeedback therapy. Time-frequency
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power analysis is also useful to detect event-related induced activity, which is
time-locked but not phase-locked to the stimulus. The increases or decreases of
power in specific frequency bands may be considered to be due to an increase or
decrease, respectively, in the synchrony of the underlying neuronal populations
[Pfurtscheller and Lopes da Silva, 1999], and thus are accordingly called “event-
related synchronization” (ERS) and “event-related desynchronization” (ERD).
Other works have also shown that changes in power may be related to cognitive
and attentional processes (see [Harmony et al., 2004; Marroquin et al., 2004]).

1.3.3 EEG inverse problem

The inverse problem in EEG consists on localizing the current sources which
are located in the brain, and which give origin to the potentials recorded by the
sensors. This is an ill-posed problem and the solution is not unique; thus one
must impose restraints to find a particular solution that suits a specific problem
(a good review on some inverse problem methods can be found in [Pascual-
Marqui, 1999]).

1.3.4 Synchrony analysis

EEG synchrony studies the dynamical connectivity patterns across neural net-
works, and their function as integration mechanisms. Synchrony can be studied
at two levels: first, from a local point of view, where synchronization and desyn-
chronization events between networks within a small area (separated by less
than ∼ 1 cm) may be reflected as power changes or bursts in the corresponding
EEG channel [Varela et al., 2001]; and second, there is evidence for long-range
synchronization between distant networks (not necessarily contiguous), which is
reflected as some form of correlation or phase-locking between the signals from
different sensors [Bressler et al., 1993; Rodriguez et al., 1999; Hoechstetter et
al., 2004; Mizuhara et al., 2005].

1.4 EEG rhythms

Since the introduction of the EEG by Berger in the 1920’s, researchers have
recognized, categorized, and described the cyclic waveforms of EEG recordings
(called EEG rhythms). These rhythms have been classified according to their
frequency as: delta (1-4 Hz), theta (4-7 Hz), alpha (7-14 Hz), beta (14-30 Hz)
and gamma (30 Hz and upwards). A thorough discussion of the neurophysi-
ological origin of each of these rhythms can be found in [Niedermeyer, 2004]
(Chapter 3).

Although it is very common to focus a particular analysis in one or more of
these rhythms, it is recommended to perform the time-frequency decomposition
in narrow frequency bands in order to obtain meaningful values of instantaneous
amplitude and phase.
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1.5 Reference electrode

The EEG measurements in a specific channel actually represent the difference
of electric potentials at two electrode sites: the electrode corresponding to that
channel (target electrode), and a reference electrode [Hagemann et al., 2001].
Electrical activity at either of these electrodes will be reflected in the EEG.
Because of this, different placements of the reference electrode may result in
very different derivations for each target electrode. Ideally, one would place the
reference on a site with very low or null electrical activity. In practice, most
recordings use a reference site placed on or near the head (cephalic reference),
such as the neck, chin, or linked earlobes. It is also possible to use a non-
cephalic reference; however, this may result in recordings largely contaminated
by electrocardiogram (EKG) artifacts [Stephenson and Gibbs, 1951].

The reference problem is important in synchrony analysis because it may
introduce spurious correlations between different EEG channels. However, in a
cognitive task experiment, one may assume that any activity at the reference
electrode is not related to the task, and thus the reference signals for different
trials may be assumed to be uncorrelated, and its effect may be reduced after
averaging across trials.

There are a few methods to transform the raw EEG signals into a new data
set which further reduces the reference effects. Two of them are (1) current
source density (CSD) estimation, which will be discussed in the following sec-
tion, and (2) transformation to the average reference (AR). The AR data set
is obtained by estimating the “average electrode” signal (which is the average
signal of all lead signals) and subtracting it from each electrode signal to obtain
a new derivation. This has the effect of re-referencing all the signals to a new
virtual reference site whose activity is precisely the average of the theoretical
reference-free lead signals. The problem is that, in practice, this activity is not
only far from null but it is also biased towards the center the covered region,
and it may also reflect changes related to the stimulus presentation in a cogni-
tive experiment (e.g. evoked potentials may induce high activity at the virtual
reference site), thus the effect of this virtual reference may not be canceled out
by averaging across trials [Junghöfer et al., 1999].

An interesting discussion of different derivation methods (including linked
ears, average reference, and CSD estimation) can be found in [Hagemann et al.,
2001]. Hagemann’s findings suggest that each method has its own limitations
and some of them may be more appropriate for a specific type of analysis than
the others.

1.6 Volume conduction

Another known problem is caused by the conductive properties of the cortex,
skull, and scalp, which smear the potentials across the surface and reduces the
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spatial resolution of the EEG [Nunez, 1995]. In 1975, Hjorth proposed a math-
ematical procedure to estimate the “source activity at the surface level of the
scalp” [Hjorth, 1975], which is known as scalp current density (SCD) or current
source density (CSD). This procedure effectively reduces volume conductor ef-
fects and yields a new set of signals which are more localized (i.e. have better
spatial resolution) than the raw potentials. Moreover, CSD is not sensitive to
the reference potential.

The idea behind CSD relies on estimating the current density field J̄ from
Ohm’s law:

J̄ = σĒ, (1.2)

where σ is the conductivity and E is the electric field. Given a surface distri-
bution of potentials Φ we may calculate the electric field as Ē = −∇Φ, thus

J̄ = −σ∇Φ. (1.3)

Finally, the divergence of a vector field represents the source intensity of the
field. We apply this to the current density field J̄ to obtain the current source
density J :

J = ∇ · J̄ = −σ∇2Φ. (1.4)

According to Equation 1.4, CSD is negatively proportional to the surface
Laplacian (SL) of the potentials. In practice, one is usually interested in relative
changes of some measure with respect to the pre-stimulus, and the factor −σ is
canceled; thus one may work only with the SL.

During the following decade, Hjorth’s procedure was refined to obtain faster
and more accurate results (see [Pascual-Marqui et al., 1988], [Perrin et al.,
1988, 1989]; [Law et al., 1993]). Basically, the SL is estimated by interpolating
the potentials analytically for each time t, and then taking the second spatial
derivatives of the interpolating function. Presently, the most used method is the
one introduced by Perrin et al. in 1988, which approximates the SL by using
spherical splines. More recently, Mizuhara et al. used CSD estimates to study
long-range phase synchronization in a cognitive task [Mizuhara et al., 2005]
and combined it with fMRI to determine which networks were being integrated
during phase synchronization stages. (Functional MRI or fMRI is 3D imaging
technique which is used to locate which parts of the brain are activated by
showing regions with increased blood flow).

Nunez et al. [1995; 1997; 2000] have developed an extensive work on the
effect of volume conduction in EEG coherence. Using simulated data from a
3 concentric spheres model, they estimated correlation coefficients for pairs of
uncorrelated cortical sources using different EEG references (Cz, neck, linked
ears, and average reference), cortical imaging, and Spline Laplacians ([Perrin et
al., 1989, 1990; Law and Nunez, 1993]). In all cases, except Spline Laplacians,
spurious high correlations were observed for short inter-electrode distances (4-
8 cm) [Nunez et al., 1997]. However, since the Surface Laplacian acts as a
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bandpass filter on the raw potentials, true coherence with low spatial frequency
(i.e., relatively smooth across the surface) may be underestimated. Because
of this, Nunez suggests to use the SL to complement, rather than replace, the
raw EEG potentials: correlations may be observed at different spatial scales
[Nunez et al., 1997, 2000] (just as correlations between customs of people from
two different cities may differ from correlations between two families, one from
each city). Therefore, raw potential, Surface Laplacian, and cortical image
coherency may, in general, represent correlations at different spatial scales of
cortical dynamics.

Unfortunately, there is a problem when measuring phase synchronization
from SL signals: since the potentials are a smooth function of the position in
the surface (partly because volume conductor effects), the Surface Laplacian,
which is the second spatial derivative of the potentials, will have a very small
magnitude. This means that the phase of the SL signals will be very sensitive to
noise, and also to the interpolation method used to estimate the SL. Hagemann
et al. [2001] also note this problem in his comparison of different reference
derivations. According to [Junghöfer et al., 1999], current density measures
with 32 or less channels will be unstable and inaccurate, and even for high
spatial sampling density, the second derivative is much more vulnerable to noise
than the scalp potentials.

An alternate solution to the volume conductor problem consists on estimat-
ing the current sources that give origin to the surface potentials. This usually
involves placing various dipoles in the areas of interest and solving the inverse
problem (with some necessary constraints) to find the source signals. This ap-
proach has been used by David et al. [2001], and Hoechstetter et al. [2004]. In
David’s method, the inverse problem is restrained by penalizing solutions which
have sources with large amplitude that do not contribute to the frequency band
of interest; the amount of penalization is locally determined (i.e. differs from
source to source) and depends on the amount of power outside the frequency
band of interest: if the signal in a given source has most of its power outside the
frequency band of interest, that source will be highly penalized. Synchroniza-
tion measures are usually calculated for each pair of sources, thus it is desirable
to have as few sources as possible while maintaining an adequate spatial resolu-
tion. In order to minimize the number of reconstructed dipoles, David et al. use
the following iterative approach: first, start with a large number of dipoles dis-
tributed uniformly across the whole cortex (with radial orientations) and solve
the inverse problem for these sources. Then, the best dipoles are selected (ac-
cording to a fitness measure, which is also based in the signal power outside the
frequency band of interest) and the process is repeated for the selected dipoles
until their fitness is higher than some threshold. Once the sources have been
determined, the Single-Trial Phase-Locking Statistic (STPLS - [Lachaux et al.,
2000b]), which we will describe in the next chapter, is estimated for each source
pair.

One problem with the method described above is that it heavily relies on the
spectral properties of the signals estimated for the full post-stimulus segment,
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but does not account for possible changes of power during the course of an
experiment (EEG signals are hardly static). Moreover, to analyze different
frequency bands, one must solve the inverse problem and obtain a different set
of sources for each band, which may provide a difficult interpretation of the
results across bands.

The approach used by Hoechstetter is much simpler: the sources are placed
in sites of interest which can be either pre-specified, or obtained from evoked
data. Also, additional dipoles may be placed to model background activity (e.g.
eye movement activity). These dipoles function as virtual sources within the
brain. Later, a coherence measure (see [Gardner, 1992]) is estimated for each
pair of source signals.

The problem, however, is that this method assumes that the modeled sources
account for all activity recorded in the sensors and, unlike the adaptive selection
approach used by David et al., this method does not attempt to find the sources
whose activity may be related to the synchronous processes. Therefore, if the
sources are not adequately distributed, the signals obtained for some of the
dipoles may in fact represent the activity in large, overlapped cortical regions,
which would defeat the purpose of source localization. Hoechstetter suggests
fitting the sources to evoked activity; however, the relation between long-range
synchrony and evoked activity is not yet clear.

1.7 Goals

The main goal of this work is to present a robust methodology to detect, analyze,
and visualize significant changes in patterns of dynamic connectivity in both a
wide spatial level (long range synchrony), and a local level (power analysis and
evoked potentials). These changes may happen within a narrow frequency band
and last only few dozens of milliseconds; thus it is important to preserve the
time and frequency resolutions. It is also desirable that the techniques described
here may be used with different synchrony measures (e.g. coherence, mutual
information, etc - see Chapter 2 for more details).

While we focus in electroencephalographic signals in this work, it is intended
that the most important contributions of this methodology hold for several types
of neurophysiological signals, including: intracranial EEG, current sources, cur-
rent density, and MEG.

The final procedure will be implemented as a Windows program with a
straightforward interface and various navigating tools in order to easily identify
and focus on the regions of interest. The program will

1. Allow the user to input raw EEG data in a standard file format

2. Preprocess and analyze the data to estimate and classify synchrony chan-
ges
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3. Display the results in various types of graphs

4. Allow the user to save the results in a file (for further analysis with other
programs)

As an example of application, the program described above will be used
by neuroscientists to study the connectivity patterns in real EEG experiments
from a neurophysiological point of view. We expect at least one paper to be
published from these studies. Another paper describing the methodology (from
a technical point of view) is already in print.

1.8 Thesis organization

The contents of this thesis are organized as follows:

• Chapter 2 presents a summary of the most common methods and tech-
niques used for EEG synchrony analysis. It also describes the most pop-
ular long-range synchrony measures found in the literature.

• Chapter 3 presents a detailed description of the proposed methodology
and synchrony measures.

• In Chapter 4 we discuss different aspects of the synchrony measures
presented in Chapter 2 and the ones proposed in Chapter 3, from a com-
parative point of view.

• Chapter 5 focuses on a mathematical model with which one can simulate
(and explain to some extent) different phenomena observed during the
analysis of various real experiments.

• Chapter 6 summarizes the main contributions of this work, and also
presents the results of the neurophysiological analysis of real experiments.
Ideas for future work are also presented here.

• Appendix ?? presents the resulting graphs and results for additional
experiments.

• Appendix ?? describes the publications and presentations originated
from this thesis.

• Appendix ?? contains the user manual for our EEG analysis software.

1.9 Experimental data

During the course of our work, we have tested the procedures using data from
various EEG experiments. Here we describe each of them.
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1.9.1 Figures and Words experiments

This experiments are designed for the study of categorization tasks [Harmony et
al., 2001]. For the Figures experiment, white-line figures on a black background
were presented to each subject. The subjects were instructed to press a button
if the figure corresponded to an animal whose name started with a consonant,
and another button if the figure did not correspond to an animal and the name
of the figure started with a consonant. If the name started with a vowel, the
subject was instructed not to respond.

The Words experiment follows a similar paradigm, with the exception that
words instead of figures are presented on the screen. The subjects were in-
structed to press one button if the word corresponded to an animal and starts
with a consonant, and another button if the word did not correspond to an
animal and started with a consonant. Otherwise, the subject was instructed
not to respond.

In both experiments, the subjects were 18 normal children (8 to 10 years
old, 9 females), all right handed with normal neurological examination. EEG
was recorded with reference to linked ears from Fp1, Fp2, F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, and Oz of the 10/20 system.
EOG was recorded from a supraorbital electrode and from an electrode on the
external canthus of the right eye. The amplifier bandwidth was set between
0.5 and 30 Hz. EEG was sampled every 5ms using a MEDICID 3E system and
stored on a hard disk for further analysis. Sampling was done every 5 ms during
a time segment from 1280 ms before the stimulus to 1500 ms after its onset.
Each trial was visually edited and only those corresponding to correct responses
and with no artifacts were analyzed. Subjects were seated in a comfortable
chair in front of the videomonitor. Stimuli were delivered by a MINDTRACER
system synchronized to the MEDICID 3E acquisition system.

1.9.2 3-digit and 5-digit Sternberg experiments

In this experiment [Harmony et al., 2004], a visual warning stimulus (lasting
300 ms) is presented at the start of each trial. After two seconds, a set of
three or five digits (memory set) is presented for 1500 ms. Two seconds later, a
single digit (probe stimulus) is displayed for 300 ms. The subject must respond
with one button if the probe was in the memory set, and with another button
if it was not. In 50% of the trials, the number belonged to the memory set.
The EEG was sampled each 5 ms with reference to linked ears from Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, and
Oz. Segments of 1280 ms were selected immediately before the memory set was
presented (pre-segment) and immediately before the presentation of the probe
stimulus (post-segment). Only correct responses and artifact-free segments were
analyzed.

13



1.9.3 Letters experiment

This experiment corresponds to a Go/NoGo task designed to study the inhibi-
tion of the motor response. A series of uppercase letters are shown, one at a
time, on the screen. The interval between the presentation of one letter and the
next one is two seconds. The subject is instructed to respond with a button
only if a ’X’ that has been preceded by an ’O’ appears. This is the Go condition.
Any letter different than ’X’ which has been preceded by an ’O’ accounts for
the NoGo condition, as it may originate the inhibition of the motor response.
EEG was recorded each 5 ms from Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. Each segment was selected from 1
s immediately before the presentation of each letter (pre-segment) to 1560 ms
immediately after (post-segment). The analysis of this experiment using the
techniques described below has been submitted for publication [Harmony et al.,
2006].
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Chapter 2

Methods and measures for
the study of EEG synchrony

2.1 Introduction

It is thought that during the execution of a relatively complex task, special-
ized (and possibly distant) areas of the brain interact together by means of
strong reciprocal connections, forming what is called a neural assembly [David
et al., 2003a]. The mechanisms involved in this large-scale integration are still
largely unknown; however, one of the most plausible candidates is the forma-
tion of dynamical links that are reflected as some form of synchronization over
different frequency bands [Varela et al., 2001] (in particular, Varela favors phase-
synchronization as the most plausible mechanism).

According to Varela et al., synchronization of neural assemblies is a process
that spans multiple spatial and temporal scales. In this sense, the most adequate
level of synchrony analysis would be at single neuron level: in the timescale of
cognitive events (typically hundreds of ms), a single neuron may fire only a few
spikes, which may not be enough to activate a target neuron. However, if these
spikes coincide in time with those fired by additional neurons, the target neuron
may be activated. Unfortunately, it is impossible to study neural interactions at
this level with the present EEG scalp sensors. On a coarser level, it is possible
to record the activity of a local neural group (within a few millimeters) using
intracranial EEG sensors: the recorded Local Field Potentials (LFP’s) blur
the contributions of the participating neurons, but at the same time highlight
their common actions. In this case, a time-frequency power analysis may yield
information about integration within the local network.

Finally, there are also studies of long-range synchronization, where the in-
tegrated networks are separated by ∼ 1 cm or more. This involves reciprocal,
poly-synaptic communication paths across the networks, which result in trans-
mission delays of at least 8 ms. It is known that the brain areas are massively
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and reciprocally connected, and that such a connectivity engenders the emer-
gence of correlations in the brain activity of the different areas [David et al.,
2003a]. Numerous methods have been used to study these correlations. Most of
these follow a particular scheme: (1) (optionally) pre-process the EEG signals
to reduce reference and volume conduction effects, (2) perform a time-frequency
decomposition of the signals, (3) estimate a synchronization measure between
pairs of lead signals of interest, and (4) perform a statistical test to determine
the significance of the measured synchrony with respect to the baseline. Certain
aspects of (1) have already been discussed in Sections 1.5 and 1.6. We will also
propose a projection method to reduce volume conduction in Section 3.7. The
rest of this chapter will deal with steps (2) through (4).

2.2 Time-frequency decomposition

Electroencephalographic recordings have a cyclic nature; therefore, it is very
common to analyze them in the frequency domain rather than in the time
domain. On the other hand, EEG is also very dynamic, and, in many cases
such as in event-related analysis, the interest is precisely in detecting changes in
the spectral properties of the signals, and in determining if those changes may be
related to the task which is being studied. In these cases, it becomes necessary to
perform a time-frequency (TF) decomposition of the signals from which one can
extract instantaneous amplitude and phase information for each frequency band
(the latter being particularly important for long-range synchrony analysis). In
this section we present the most common tools used to achieve this.

2.2.1 Local windowed Fourier transform

The discrete version of the Fourier theorem states that a periodic discrete func-
tion f(t) can be expressed as a sum of pure complex tones as follows:

f(t) =
1
N

N−1∑

k=0

F (k) exp
[
2πi

N
kt

]
, n = 0, . . . , N − 1, (2.1)

where N is the period of f(t) and F (k) are the Fourier coefficients given by

F (k) =
N−1∑
t=0

f(t) exp
[
−2πi

N
kt

]
. (2.2)

F is called the Fourier transform (FT) of f , and it provides us with a
description of the frequency content of the original signal. For example, the
magnitude of F (k) indicates how much of the frequency 2πk/N is present in
f . In terms of EEG signals, this represents how strong is each rhythm in a
given recording. One problem with the FT, however, is that it assumes the
signals to be stationary (i.e. their frequency content does not change over time),
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which may not be true for some signals such as EEG. The solution consists on
estimating the Fourier transform “locally” within a narrow time window around
t0, and then just slide t0 to obtain the Fourier coefficients F (k, t0) at each time.
This is represented as

F (k, t0) =
N−1∑
t=0

f(t)w(t− t0) exp
[
−2πi

N
kt

]
, (2.3)

where w(t) is a real finite window function symmetric around zero. Generally,
w(t) decays smoothly as |t| increases, so that only values relatively near t0 have
a significant weight when estimating F (k, t0). The width ∆t of the window
has a direct effect in the time and frequency resolution of the local Fourier
transform. Narrow windows will result in a higher time resolution, since the
Fourier coefficients for t0 will be less contaminated by values distant from t0.
However, the Heisenberg Uncertainty principle states that it is not possible to
determine, with arbitrary precision, both the time and frequency localization
of the components of a signal. Mathematically, the product of ∆t and the
frequency width ∆ω of the window function (that is, the width of the Fourier
transform W of w) has a lower bound. More specifically,

∆t∆ω ≥ 1
4π

, (2.4)

with ∆t in seconds and ∆ω in Hz. The lower bound in Equation 2.4 is reached
when the window function is Gaussian, thereby providing the best compromise
between time and frequency localization.

The local windowed Fourier transform is widely used in EEG research (for
example, [Gross et al., 2001] and [Harmony et al., 2004]), however, it has
the disadvantage of focusing only on a discrete set of frequencies given by
2πkS/M, k = 0, . . . , M − 1, where M is the length of the Fourier transform,
and S is the sampling rate (in Hz) of the analyzed signal. Even though the
basic EEG rhythms lie on relatively wide bands, it is sometimes desirable to
perform a time-frequency decomposition in narrow bands centered at arbitrary
frequencies. This is especially important in phase-synchrony analysis, since the
instantaneous phase of a signal, which can be obtained from the argument of
the Fourier coefficients, only has a physical meaning for narrow-band signals.
To overcome this, one can use a relatively large M (length) for the Fourier
transform, or resort to quadrature or wavelet filters.

2.2.2 Gabor filters

Gabor filters are quadrature band-pass filters which consist of a Gaussian kernel
shifted in frequency to the tuning frequency ω. The Gabor kernels are given by:

Gω,σt(t) =
1
Z

exp
[
− t2

2σ2
t

]
exp [iωt] , (2.5)
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Figure 2.1: True phase and estimated phase (using Gabor and sinusoidal quadra-
ture filters) for a 1 Hz sinusoidal signal.

where σt is the filter width (in time units), and Z is a normalizing constant.
The frequency response of a Gabor filter is a Gaussian centered at ω with a
frequency width σω given by:

σω =
1

4πσt
;

in other words, Gaussian filters also reach the lower bound in the Heisenberg Un-
certainty principle (Equation 2.4); because of this, they are also a common choice
for EEG time-frequency decomposition (see [Marroquin et al., 2004; Schack et
al., 2005]).

The complex filtered signal Fω(t) is simply obtained as the convolution of the
original signal f and the filter kernel. The instantaneous amplitude and phase
of the filter output can then be calculated from the magnitude and argument
of Fω(t).

A quadrature filter has the property of its frequency response being zero
for all negative frequencies. For a Gabor filter, however, when the tuning fre-
quency is relatively low, there is a chance of the filter having a strong response
to negative frequencies. In this case, the quadrature property of the filter is
destroyed, and the instantaneous magnitude and argument are no longer well-
defined, which may lead to distorted phase estimates (see Figure 2.1).

This distortion can be easily characterized for sinusoidal signals. Given an
input signal x(t) = 2 cos 2πft, the output y(t) of a unit-gain bandpass filter
tuned at f Hz (obtained by convolving x with the filter kernel) will have the
form

y(t) = ei2πft + αe−i2πft, (2.6)

where α ∈ [0, 1) is the attenuation factor of the component with negative fre-
quency. The argument Φy(t) of y is given by

tan Φy(t) = ε tan 2πft, with ε =
1− α

1 + α
. (2.7)
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On the other hand, the (unwrapped) argument of the original signal is
Φx(t) = 2πft; thus one can compute the argument distortion d as

d(t) = wrap(2πft)− Φy(t)
= wrap(2πft)− arctan (ε tan 2πft) ,

from which one can see that d(t) = 0 when t = k/4f , k = 0, 1, . . .; between
these points, d will change its sign, which means it will oscillate at twice the
tuning frequency f .

If x(t) has a more complex structure (i.e., if it is a sum of sinusoids with
different frequencies, amplitudes, and phases), the distortion cannot be charac-
terized in an easy way, but it will also have a significant effect on the measured
phase.

2.2.3 Sinusoidal quadrature filters

One alternative to Gabor filters are the sinusoidal quadrature filters (SQF’s
- [Guerrero et al., 2005]) whose asymmetrical frequency response has a finite
support which never intersects the negative frequencies. The frequency response
of an SQF is given by:

Gωk,h(ω) =





1
2

[
1 + sin

(
(hk+2(ω−ωk))π

2hk

)]
if ω ∈ [ωk − hk, ωk],

1
2

[
1 + sin

(
(h+2(ω−ωk))π

2h

)]
if ω ∈ [ωk, ωk + hk],

0 otherwise,

(2.8)

where ωk is the tuning frequency, h is the bandwidth, and hk = min{h, ωk}.
Figure 2.2 shows the frequency response curves for Gabor filters and SQF’s
tuned at 1 Hz and 10 Hz.

The filter kernels for SQF’s can be obtained as the inverse Fourier transform
(Equation 2.1) of their frequency response function. The filtered signal is then
obtained by convolution with these kernels. As one can see in Figure 2.1, SQF’s
do not distort the phase even for low tuning frequencies. Later, we will compare
the results of the actual synchrony analysis procedure using both Gabor filters
and SQF’s to determine how seriously the phase distortion (introduced by Gabor
filters) affects our results.

2.2.4 Wavelet analysis

Wavelet analysis is equivalent to using a bank of band-pass filters, with the
exception that the kernel width of the wavelet-based filters depends inversely
on the tuning frequency. Lachaux et al. [1999, 2000b] use the Gabor wavelet
extensively in their work. The bandwidth of the Gabor wavelets is proportional
to the tuning frequency (for instance, according to [David et al., 2003a] they
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Figure 2.2: Frequency response of Gabor filters (red curve) and sinusoidal
quadrature filters (blue curve) tuned at 1 Hz (left graph) and 10 Hz (right
graph). At relatively high tuning frequencies, both filters have a very simi-
lar response; however, at low tuning frequencies, Gabor filters show a strong
response at negative frequencies, which may result in distorted phase estimates.

chose the wavelet parameters such that at a tuning frequency of 40 Hz, the
bandwidth of the filter covers from 20 Hz to 60 Hz). However, since the phase
obtained from the output of a filter only has a physical meaning if the signal
has narrow bandwidth, it becomes necessary to pre-filter the EEG signals before
using wavelets for TF decomposition.

2.3 Long-range synchrony measures

Although it is common that several areas of the brain interact together at a
given time in the course of a cognitive task, synchronization measures are usually
estimated only between pairs of leads. This simplifies the problem enormously,
and also makes the comparison of different measures relatively simple.

In a very general sense, two simultaneous signals are synchronized in a given
time window when they show a certain correlation. This correlation can be de-
fined in different ways, depending on the physiological motivation, for example:

1. If both signals show a spike within the time window (e.g. synchrony at
neuron level).

2. If their difference in phase is relatively constant (for narrow band signals).

3. If the signals are statistically inter-dependent (e.g. if their statistical cor-
relation is high)
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Thus, a synchronization measure is one that estimates the degree of corre-
lation (according to some criterion) between the two signals. Here we describe
the most common measures found in the literature.

2.3.1 Coherence

According to [Gardner, 1992], the coherence of two zero-mean random variables
X and Y can be defined simply as the squared magnitude of their correlation
coefficient ρXY , given by:

ρXY =
E{XY ∗}

[E{|X|2}E{|Y |2}]1/2
, (2.9)

where E{·} denotes the expected value. In practice, X and Y are usually series
of N sample values and the empirical degree of coherence can be estimated as
follows:

|ρXY | = |R̂XY |[
R̂XXR̂Y Y

]1/2
, (2.10)

with

R̂XY =
1
N

N∑

i=1

X(i)Y ∗(i). (2.11)

The coherence coefficient measures the linearity of the relation between X
and Y , regardless of their difference in magnitude. It is normalized between 0
and 1, where |ρ| = 1 means that Y can be obtained as a linear transformation
of X.

If X and Y represent two time series (such as two EEG signals), it is possible
to spectrally decompose the coherence by passing both X and Y through a
tunable narrow-band bandpass filter, and then measuring the coherence of the
filtered signals.

Coherence is widely used as a measure of EEG synchrony (see below), how-
ever, it is originally defined for stationary time-series. Since EEG signals are
very dynamic, it is common to estimate the coherence CXY (t) across a short
time window centered around a time of interest t as follows:

CXY (t) =
|R̂XY (t)|

[
R̂XX(t)R̂Y Y (t)

]1/2
, (2.12)

with

R̂XY (t) =
1

2w + 1

t+w∑

i=t−w

X(i)Y ∗(i). (2.13)

The size of the time window (2w+1) is typically a few hundreds of milliseconds,
which corresponds to the duration of most cognitive events. By inspecting
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Figure 2.3: Average coherence (taken across trials) between electrodes T5 and
O2 of the Figures experiment at 8 Hz. Note the border effects caused by the
large window size (which is required for reliable coherence measures); these
effects must be taken into account when performing a statistical significance
analysis in order to avoid biasing. Disregarding these border effects (around
150 ms on each side), one can clearly see an increase on the average level of
synchronization between the electrodes under study.

or analyzing CXY (t), it is possible to find episodes of high coherence in an
experiment. As an example, Figure 2.3 shows the average 8 Hz coherence (taken
across all trials) between electrodes T5 and O2 of the Figures experiment, using
a window size of 105 ms (w = 10 samples).

In [Bressler et al., 1993], coherence is used to study the brain integration
in monkeys during a visual pattern discrimination task within a GO/NO-GO
scheme: depending on the stimulus, the subjects must respond (GO condition)
or withhold the response (NO-GO condition). The EEG data consisted of in-
tracranial local field potential (LFP) recordings from 15 cortical sites. In the
GO condition, Bressler et al. found episodes of significantly high coherence over
a broad frequency range (from 12.5 Hz to 87.5 Hz) between distant sites. Ac-
cording to Bressler, “elevated coherence, rather than simply appearing because
of common activation of multiple cortical areas by an imposed stimulus, man-
ifested spatially and temporally complex patterns in the period after stimulus
presentation, when the monkeys had to discriminate successfully between two
visual forms and then perform correctly.”

Friston et al. [1997] suggests that dynamical correlations between two nar-
row band EEG signals may be related to changes in the phase-locking between
the signals: using experimental magnetoencephalographic (MEG) data (only a
component in the gamma band), they found that in episodes with high cross-
correlation between two sites, the phase difference between both signals had
a larger tendency towards zero, whereas in the low-correlation episodes, the
histogram of the phase differences was much flatter. This is supported by a
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theoretical analysis showing the relationship of the coherence measure and the
distribution of the phase differences.

Gross et al. [2001] describe a method to study the neural interactions from
the analysis of coherent sources. This method estimates the coherence between
pairs of cortical sources (an inverse-problem approach is used to estimate the
activity at these sources). Gross et al. studied the cortical interactions in a
patient with Parkinson’s disease and found significant coherence values in the
alpha band (particularly 9 to 12 Hz) between sources separated by more than
6 cm.

Another method based on the coherence of cortical sources is proposed by
Hoechstetter et al. [2004]. We have already described (in Section 1.6) the in-
verse approach used by Hoechstetter to obtain the source signals. These signals
are then passed through a bank of bandpass filters (from 4 to 50 Hz in 2 Hz
steps) and coherence was estimated between pairs of sources. As an exam-
ple, the method was used to analyze a task in which four different letter strings
(HHHHH, SSHSS, SSSSS, and HHSHH) were presented to the subject, who was
told to indicate the central letter by pressing a key with the left or right hand,
respectively. Large coherence was found in the low frequency range between
the left and right visual cortex regions, and also in the gamma band between
the midline-visual cortex, and the left and right motor cortex areas. A widely
distributed decrease in coherence was also found around the 10 Hz range.

2.3.2 Phase Locking Statistic

According to Varela et al. [2001], the most plausible mechanism of neural in-
tegration is the formation of dynamical links, which result in an increase of
phase-locking between signals. In general, two (narrow band) signals with in-
stantaneous phases φ1(t) and φ2(t), respectively, are phase-locked in a time
window T if

nφ1(t)−mφ2(t) = constant, t ∈ T, (2.14)

where n and m are integers indicating the ratios of possible frequency locking
(called m : n synchrony). For simplicity, most studies concentrate on signals
within the same frequency band (i.e. m = n = 1, or 1 : 1 synchrony).

Lachaux et al. [1999] introduced a method to estimate the degree of phase-
locking and detect significant synchrony values between two recording sites, in
a specific frequency range. The phase-locking statistic (PLS) is defined as

PLSe1,e2(t) =
1

Nr

∣∣∣∣∣
Nr∑

n=1

exp [i (φn,e1(t)− φn,e2(t))]

∣∣∣∣∣ , (2.15)

where e1 and e2 represent the two recording sites, Nr is the number of trials,
and φn,e is the instantaneous phase of the bandpass filtered signal at site e for
trial n. This analysis is performed for all frequency bands of interest.
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Figure 2.4: PLS estimated between electrodes T5 and O2 of the Figures ex-
periment at 8 Hz, where an increase of synchrony can be observed in the post-
stimulus segment.

The PLS equals one minus the inter-trial variance of the phase differences
between the two signals (see [Fisher, 1995] for a definition of circular variance).
If the phase difference varies little across trials, the PLS is close to 1; otherwise,
it is close to zero. Figure 2.4 shows the estimated PLS at 8 Hz for electrodes T5
and O2 from the Figures experiment. As in the previous case (with coherence),
an increment of synchronization can also be observed after the stimulus onset.

In order to determine the significance of the phase-lock values, a randomized
(surrogate) set of data is constructed by shuffling trials for one of the electrodes
under study. This and other methods of significance estimation will be discussed
in Section 2.4.

The PLS was tested with simulated data and with real human intracortical
recordings (from an epileptic patient performing a visual discrimination task -
see [Lachaux et al., 1999] for details). The analysis of real data focused only on
one frequency band around 45 Hz, and showed significant long-range synchro-
nizations that emerged and disappeared over time. Short-range couplings were
also found; however, in this case, the PLS decreased steadily with interelectrode
separation, which suggests that those couplings were spuriously introduced by
volume conductor effects.

Unlike coherence, the PLS does not assume stationarity of the signals (which
can rarely be validated), and does not reduce the time resolution of the analysis.
Furthermore, coherence also increases with amplitude correlation, and the rel-
ative importance of amplitude and phase correlation in the coherence measure
is not clear.

PLS was used by Rodriguez et al. [1999] to study gamma synchroniza-
tion during an ambiguous visual discrimination task: the subjects were shown
Mooney faces, which are black and white shapes that resemble a face when
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presented in upright orientation (perception condition), but are usually seen
as meaningless shapes when presented upside-down (no-perception condition).
Phase synchronization (within the gamma range) was studied using the PLS
method, which showed differences between the perception and no-perception
conditions: during perception, significant couplings between distant sites were
observed that did not show in no-perception. Similarly, a global desynchro-
nization pattern following the coupling stage was also observed only in the
perception condition. Interestingly, as previously found in [Friston et al., 1997],
synchronized electrodes showed a phase-lag distribution centered at zero, re-
gardless of the interelectrode distance.

2.3.3 Single-Trial Phase Locking Statistic

One limitation of the phase-locking statistic is that it requires several trials
to estimate the degree of synchrony between two signals. In some cases, it
is desirable to perform a statistic with as few trials as possible, or even with
single trials (for example, in experiments where a specific induced response is
not necessarily time-locked to the stimulus). To overcome this limitation, the
smoothed or single-trial phase-lock statistic (STPLS) was introduced [Lachaux
et al., 2000b], which is given by:

STPLSe1,e2(t) =
1

2w + 1

∣∣∣∣∣
t+w∑

t′=t−w

exp [i (φe1(t
′)− φe2(t

′))]

∣∣∣∣∣ . (2.16)

The STPLS equals one minus the variance of the phase differences across
a time window centered at time t with length 2w + 1. A STPLS of 1 means
that both signals are perfectly in phase across the time window. This measure
appears to be more in agreement with the synchrony criterion given by Equation
2.14, at the expense of reducing the time resolution of the analysis. Figure 2.5
shows the STPLS values for electrodes T5 and O2 of the Figures experiment,
at 8 Hz. The window size is 105 ms (w = 10). Note that the results are very
similar to those obtained with coherence.

This measure has also been used by Mizuhara et al. [2005] to study neural
integration during an arithmetic task. The phase-lock measure was estimated
between pairs of current source density signals (see Section 1.6) and then cor-
related with fMRI measurements to determine which networks were involved in
synchronous processes. According to the results, the fMRI showed significant
responses in the parietal and temporal cortices, which were associated with
phase-synchronization observed in the beta range (around 14 Hz).

Schack et al. [2005] have also used this measure to test for 1 : 1 synchrony,
but also provide an extended measure to study m : n synchrony:

Γe1,e2(t) =
1

2w + 1

∣∣∣∣∣
t+w∑

t′=t−w

exp [i (mφωn,e1(t
′)− nφωm,e2(t

′))]

∣∣∣∣∣ , (2.17)
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Figure 2.5: Average STPLS (estimated across all trials) between electrodes T5
and O2 of the Figures experiment at 8 Hz, where an increase of average syn-
chrony can be observed in the post-stimulus segment (disregarding the border
effects). These results are very similar to those obtained with coherence.

where φωn,e is the instantaneous phase of the signal at site e, filtered around
frequency ωn. There must be a harmonic relation between the frequencies ωn

and ωm.

This measure was used to study a working memory task where a set of 1
to 4 digits were presented to each subject, followed by an ’x’ symbol indicating
the beginning of the retention interval (see [Schack et al., 2005]). After the
retention interval, another digit (probe) was presented and the subjects were
instructed to respond with a keypress whether the probe was or was not in the
set. Significant 1 : 1 synchrony was found in the theta (6 Hz) and upper alpha
(12 Hz) bands between distant sites (e.g. right-frontal vs. left-temporal). Inter-
frequency (m : n) synchronization was also found between the sites F7 and O2
of the 10/20 system, corresponding to theta/upper-alpha couplings (1 : 2 ratio).

2.3.4 Generalized Synchronization

According to David et al. [2004], two dynamical systems X and Y show gen-
eralized synchronization (GS) when “the state of the response system Y is a
function of the state of the driving system X : Y = F (X)”. If F is continuous,
then close points on the attractor of X should correspond to close points on the
attractor of Y .

The method described in [Quian-Quiroga et al., 2002] and [David et al.,
2004] to estimate the GS relies upon vectors ~Xn = [xn, xn+τ , . . . , xn+(m−1)τ ]
and ~Yn = [yn, yn+τ , . . . , yn+(m−1)τ ], which are embeddings of the signal x in an
m-dimensional space with a delay time τ . If pni and qni, i = 1, . . . , k, denote
the indices of the k nearest neighbors of ~Xn and ~Yn, respectively, then one can
define a measure of closeness Sk

n(X|Y ) between the true neighbors { ~Xpni} of
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~Xn and its mutual neighbors { ~Xqni}. Quian-Quiroga proposes the following
measure:

Sk
n(X|Y ) =

〈
| ~Xn − ~Xpni

|2
〉

i〈
| ~Xn − ~Xqni

|2
〉

i

, (2.18)

where 〈·〉i indicates the average value across i = 1, . . . , k.

Equation 2.18 measures the ratio of the mean square distance between ~Xn

and its k nearest neighbors, and the mean square distance between ~Xn and its
mutual neighbors (with respect to ~Yn). By construction it is bounded between
0 and 1, where 1 means that the cloud of the k nearest neighbors of ~Yn maps
exactly to the cloud of k nearest neighbors of ~Xn. Finally, synchronization
measure is the average of Sk

n(X|Y ) over a time window t− T ≤ n ≤ t + T .

According to Quian-Quiroga, GS should be very sensitive to weak correla-
tions (which may or may not be useful for specific applications) - this is con-
firmed by experiments performed by David et al. On the other hand, GS is also
computationally demanding and greatly reduces the time resolution of the syn-
chrony analysis, which may be a problem when studying the gamma band, where
the synchronization periods may be relatively short. Another disadvantage of
GS is that it relies on many parameters: τ , m, k, and T , which control the
tradeoff between the robustness, time-resolution, and computational load of the
method. Unfortunately, neither David or Quian-Quiroga provide a comparison
of the behavior of GS for different parameter values.

2.3.5 Mutual Information

Mutual information (MI) is a statistical measure which estimates, for two ran-
dom variables X and Y , the amount of information in X given that Y is known,
and viceversa. MI is based on the entropy H of a discrete random variable
X ∈ {x1, . . . , xM}, which is given by

H(X) = −
M∑

i=1

pi ln pi, (2.19)

where pi = P (X = xi). If X is continuous with a finite support, one can
simply partition the support in M bins and estimate the pi’s by counting. For
a bi-variate distribution, the joint entropy is defined as

H(X, Y ) = −
∑

i,j

pij ln pij , (2.20)

where pij = P (X = Xi, Y = Yi). If X and Y are independent, we have that
H(X,Y ) = H(X) + H(Y ).

The mutual information between X and Y is defined as

MI(X, Y ) = H(X) + H(Y )−H(X, Y ). (2.21)
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If X and Y are independent, then MI(X, Y ) = 0; otherwise it will take
positive values up to H(X). MI basically measures the similarity between the
histograms of X and Y (estimated, in our case, across a time window), thus
it does not take into account any possible time lag between both signals. This
makes it inadequate as a phase-locking measure. It is possible, however, to apply
time-embedding techniques (for example, taking as sample data the vectors ~Xn

used in GS) to obtain a lag-sensitive MI measure [Quian-Quiroga et al., 2002].

MI presents the same problems that GS: it is computationally expensive
(compared to phase-locking measures such as coherence or PLS), and if time-
embedding techniques are used, it will be at the expense of high time resolution.
For these reasons, MI and GS are better suited for the analysis of stationary
couplings and/or low frequency synchrony.

2.4 Statistical significance analysis

Whether one is studying evoked potentials, power changes, or synchrony be-
tween pairs of electrodes, it is likely that one will obtain a set of time series
{Xk(t)}, each of which represents the computed measure for a specific combina-
tion of trial number, frequency band, electrode, or electrode pair (represented
by k). For example, in the case of evoked potentials, k may represent an elec-
trode index, and Xk would be the average signal at that electrode, whereas in
the case of synchrony, k may represent a 4-tuple of the form < j, ω, e1, e2 > for
trial j, frequency ω, and electrode pair < e1, e2 >.

Once a specific measure X(t) is computed, one would like to determine, for
each t, if X(t) represents a significant deviation from what would be considered
as a null condition (for example, if one is studying event-related activity, one
can consider the pre-stimulus segment as the null condition). To do this, one
can estimate the distribution of X during the null condition, and then perform a
statistical test to determine if X(t), for any t, comes from the null distribution.

2.4.1 Choosing the null population

The null population consists of those values of X(t) which are observed during
the null condition. For example, if one wants to study task-related activity, one
can assume that everything that happens before the stimulus onset is part of
the null condition, and significant changes in X with respect of this condition
may be related with the task. In this case, one choice for the null population is
simply those values of X in the pre-stimulus (i.e., X(1), . . . , X(Ts) - although
in practice, possible border effects due to filtering or averaging should be taken
into account). For example, this is the method used by [Marroquin et al., 2004]
to estimate the significance of power changes (i.e., induced power) during a
cognitive task. A similar technique was used by [Mizuhara et al., 2005].

It is also common to determine if the X values are significantly different from
what can be expected by chance. In this case, one can build the null population
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by taking the original data and manipulating it in order to obtain a new set of
surrogate data which does not have the property of interest (i.e., the property
which is being measured). In particular, when one is measuring synchrony
between two signals, one would like to construct the null population so that
the two surrogate signals are certainly unsynchronized. This can be achieved,
for example, by shuffling the samples in each signal, which would destroy any
temporal structure the signals may have. One can then compare the measured
synchrony against the distribution of the surrogate data, and decide if there is
significatively more synchrony than what can be expected by chance. Lachaux
et al. [1999; 2000] use surrogate data to estimate the significance of their PLS
and STPLS measures: the surrogate synchrony values, for two electrode sites
e1 and e2, is obtained by shuffling the trials for e2.

Once the null population is obtained, one can estimate its distribution in
various ways, or use statistical tools, such as ANOVA, to compare the X values
against the null condition. We will focus on estimating the null distribution and
estimating the p-values for each X(t).

2.4.2 Significance estimation: normal distribution

One of the most common methods used to determine the significance of the
synchrony changes consists in assuming that the null distribution is normal
with mean X̄null and variance σ2

null, and computing the Z variables given by:

Z(t) =
X(t)− X̄null

σnull
. (2.22)

In practice, if the size n of the null population is sufficiently large (e.g., n > 30),
one can replace X̄null and σ2

null with the sample average and sample variance of
the null population, respectively.

Under the null condition, Z is normally distributed with mean 0 and variance
1. Therefore, given the significance level α, the quantile z(1−α) represents the
threshold that the Z values must cross to be considered significantly different.
For example, if Z(t) > z(1−α), then Z(t) is significatively greater than in the null
condition. Common values for α are 0.05 and 0.01, corresponding to thresholds
z0.05 = 1.64, and z0.01 = 2.33.

It is also possible to test the average X̄(t) of X across a time window against
the null condition. For example, if the time window goes from t − w to t + w,
X̄(t) would be given by

X̄(t) =
1

2w + 1

t+w∑

t′=t−w

X(t), (2.23)

which is normally distributed with mean X̄null and variance σ2
null/(2w + 1).

Therefore, the Z variables would be given, in this case, by

Z(t) =
X̄(t)− X̄null

σnull/
√

2w + 1
. (2.24)
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2.4.3 Significance estimation: kernel density estimation

It may not be correct to assume normality for the X-values, especially if the
number of trials is relatively small. In this case, the null distribution pX can
be estimated from the null population {xi} as the sum of superimposed kernel
functions kh centered at each xi. In other words,

pX(x) =
1
Z

n∑

i=1

kh(x− xi),

where n is the sample size, and Z is a normalization constant chosen so that
pX integrates to 1. The parameter h specifies the width of the kernel and
it determines the smoothness of pX . Adequate choice of h depends on the
sample data; however, for automated applications, a common rule of thumb for
a Gaussian kernel (which we use) is provided by [Silverman, 1986]:

hopt = 1.06σn−1/5,

where σ is the standard deviation of the null population (usually estimated from
the sample).

The p-value of a given x∗ is then defined as pX(x > x∗) = 1−pX(x < x∗) =
1−PX(x∗) where PX(x) is the cumulative density function (cdf) corresponding
to pX , which can be defined as:

PX(x∗) =
∫ x∗

−∞
p(x)dx. (2.25)

If the p-value for a given x∗ is lower than the significance level α, then x∗

is considered to be significative higher with respect to the null distribution. A
similar test can be performed to determine if x∗ is significatively lower.

In practice, one can simply obtain pX by convolving the histogram (with
equally spaced bins) of the null population with the gaussian kernel, and nor-
malizing the resulting histogram so that it integrates to 1. One can then ap-
proximate the cdf using numerical integration methods. For example, given a
histogram (h, b) where hn represents the frequency (count) of samples which fall
in the range [bn, bn+1) (i.e., the n-th bin), the cdf PX(x∗) can be approximated
using rectangular integration (where each bin defines a rectangle whose height
is hn) as follows:

1. Compute h′ as a normalized version of h; that is, h′n = hn/
∑

i hi. hn

represents the probability of x falling into bin n.

2. Find j such that bj ≤ x∗ < bj+1.

3. Estimate the cdf as PX(x∗) = h′j(x
∗ − bj)/(bj+1 − bj) +

∑
i<j h′i.
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2.5 Visualization techniques

Synchrony values are usually estimated for various electrode pairs, at different
frequencies, and for any point in the timeline. In other words, the data result-
ing from a synchrony analysis is 4-dimensional, which represents a visualization
problem. Because of this, most works resort to averaging across time or fre-
quency, or focus only on specific regions of the 4-dimensional synchrony space,
in order to display their results.

The simplest type of display is a typical XY graph of a single-variable func-
tion. For example, one may take a fixed electrode pair and frequency, and plot
the corresponding coherence time-series, or their significance values. However,
this type of graph does not reveal anything about the spatial or spectral distri-
bution of synchrony values. Other works use a matrix display of a two-variable
function, in which the color assigned to each point represents the synchrony
value. Typically, one fixes the electrode pair and displays a time-frequency map
(an example is presented in Figure 2.6a). Many works use this type of display
([Varela et al., 2001], [Hoechstetter et al., 2004], [Schack et al., 2005]), but one
may also choose a fixed time-frequency window and display the synchrony values
for each electrode pair ([Lachaux et al., 1999]).

Another common type of display (shown in Figure 2.6b), for a fixed time-
frequency region, consists on a head diagram where each electrode site is rep-
resented by a dot. Significant synchrony between two sites is represented by a
straight line connecting the corresponding dots ([Rodriguez et al., 1999], [Varela
et al., 2001], [Mizuhara et al., 2005], [Schack et al., 2005]). The problem with
this display is that, when there is a considerable amount of synchronous activity,
too many lines overlap and it becomes difficult to grasp the spatial distribution
of the synchrony values. An alternative consists on a multitoposcopic display, in
which at each recording site e, one shows a head diagram with the distribution
of synchrony between e and every other site (Figure 2.6c).

There may be difficulties when one wants to plot a multi-toposcope for high
electrode density recordings: only a certain number of toposcopes (head dia-
grams) can be presented within the bigger head before the graph becomes too
cluttered. In Chapter 3 we will offer a few suggestions to overcome this problem.

Marroquin et al. introduced in 2004 a method for the study of EEG-based
psychophysiological experiments, which analyzes power changes in EEG and
presents the results in a detailed time-frequency-topography (TFT) display
[Marroquin et al., 2004]. The methodology basically consists of four parts:

1. A time-frequency decomposition using Gabor filters, from which the log-
power signals are obtained.

2. Estimation of a statistic Yω,e(t), which measures the mean deviation of
the log-power with respect to the pre-stimulus average, for each frequency
ω and electrode e.
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Figure 2.6: Common displays used for synchrony data: (a) Time-Frequency
map of significance indexes of synchrony changes with respect to a null condi-
tion (in this case, the pre-stimulus segment) during a figure classification task
([Marroquin et al., 2004]). The data corresponds to the electrode pair Fp1-O2.
Red regions correspond to significant increases in synchrony, whereas green re-
gions indicate significant decreases. (b) Synchrony patterns observed at specific
time-frequency points during the figure classification task. Only significant in-
creases in synchrony with respect to the pre-stimulus average are shown. (c)
Multitoposcopic representation of the corresponding synchrony patterns shown
in (b). Both increases (red) and decreases (green) are shown.
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Figure 2.7: Time-frequency-topology display of significance values of power
changes with respect to the pre-stimulus for a word classification task (see [Mar-
roquin et al., 2004] for details). The significance indices range from -1 to 1, where
negative values indicate a decrement of power, whereas positive values indicate
power increment. Only significant values (p < 0.1) are plotted.

3. Estimation of a significance index Iω,e(t) based on the p-value of Yω,e(t)
with respect to the distribution of Yω,e in the pre-stimulus.

4. Plot the significance indices as follows: for each time t and frequency ω
draw a small head diagram with the distribution of the significance values
Iω,e(t) for all electrodes (see Figure 2.7).

Additionally, one may perform a segmentation of the time-frequency (TF)
plane in regions with homogeneous activation patterns (that is, patterns of
simultaneous increases and decreases of power which are significant). For this,
Marroquin et al. propose a Bayesian approach based on a Markov Random
Field (MRF) model of a class field Cω,e(t), which indicates if the Y -values
are significantly higher (class C = 1), lower (C = −1), or equal (C = 0),
with respect to the pre-stimulus distribution. A regularization constraint is
included in the model in order to favor solutions with relative large regions with
homogeneous activation patterns.

While this procedure is designed for amplitude analysis, some of the tech-
niques it involves can also be used for synchrony analysis; particularly the dis-
play techniques, since synchrony data is highly dimensional.
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Chapter 3

Phase synchrony analysis

3.1 Procedure overview

In this chapter, we describe in detail the methodology we follow for the analysis
of EEG synchrony patterns. Our procedure consists of the following steps:

1. Run the EEG signals through a bank of bandpass quadrature filters and
extract phase information (TF phase analysis).

2. Calculate a synchrony measure from the filtered signals.

3. Estimate the likelihoods and prior distributions for the MRF model using
the synchronization values.

4. Use Bayesian estimation to find significant synchronization patterns that
are persistent.

5. Display synchronization patterns as multitoposcopic graphs and time-
frequency-topography (TFT) maps.

We illustrate our procedure using data from a figure classification experiment
[Harmony et al., 2001] where white-line figures on a black background were
presented to each subject. The subjects were instructed to press a button if the
figure corresponded to an animal whose name started with a consonant, and
another button if the figure did not correspond to an animal and the name of
the figure started with a consonant. If the name started with a vowel, the subject
was instructed not to respond. The subjects were 18 normal children (8 to 10
years old, 9 females), all right handed with normal neurological examination.
EEG was recorded with reference to linked ears from Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, and Oz of the 10/20 system.
EOG was recorded from a supraorbital electrode and from an electrode on the
external canthus of the right eye. The amplifier bandwidth was set between
0.5 and 30 Hz. EEG was sampled every 5ms using a MEDICID 3E system and
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stored on a hard disk for further analysis. Sampling was done every 5 ms during
a time segment from 1280 ms before the stimulus to 1500 ms after its onset.
Each trial was visually edited and only those corresponding to correct responses
and with no artifacts were analyzed. Subjects were seated in a comfortable
chair in front of the videomonitor. Stimuli were delivered by a MINDTRACER
system synchronized to the MEDICID 3E acquisition system.

The recorded potentials will be denoted by Vj,e,t = Vj,e(t), where j =
1, . . . , Nr is the trial number, e = 1, . . . , Ne represents the electrode site, and
t = 0, . . . , Nt − 1 is the time index (in samples), with t = 0 indicating the be-
ginning of each recording. The time of stimulus onset (pre-stimulus length) will
be denoted by Ts. In particular, for the Figures experiment we have Nr = 1290,
Ne = 20, Nt = 512, and Ts = 200.

The procedure has also been tested with other various experiments: a word
categorization experiment ([Harmony et al., 2001]) similar to the Figures exper-
iment (with words presented instead of figures), a working-memory task based
on the Sternberg paradigm ([Harmony et al., 2004]), and a Go/NoGo experi-
ment to study the inhibition of the motor response ([Harmony et al., 2006]).
Details and results for these experiments can be found in Chapter 6.

3.2 Instantaneous phase extraction

In order to extract phase data from the EEG signals, one can perform a time-
frequency decomposition using a bank of quadrature filters. We have already
studied two possible choices: Gabor filters and Sinusoidal Quadrature filters
(SQF’s). We have chosen the Sinusoidal filters to avoid any distortion that may
be introduced by Gabor filters tuned at low frequencies. Later, in Section 3.6,
we will compare the results of the analysis described below, using both types
of filters, and determine if there is an actual advantage of SQF’s over Gabor
filters.

In general, one can obtain a time-frequency decomposition of the EEG sig-
nals by convolving each Vj,e with a bank of bandpass filters whose kernels are
Kω, where ω is the tuning frequency of the filter. In other words, the filtered
signal Fω,j,e(t) is given by:

Fω,j,e = Vj,e ∗Kω, (3.1)

We have chosen a bank of filters tuned at each Hertz, from 1 Hz to Nf = 40
Hz, with a fixed bandwidth for all the filters, equivalent to a standard deviation
σω ≈ 1 Hz (σt = 15 samples) for the Gaussian response of Gabor kernels. This
results in a bandwidth of 1.76 Hz within 3 db of attenuation. The width of
Sinusoidal filters was chosen to have a similar bandwidth than Gabor filters
(h = 5σω, approximately).
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Finally, one can extract, from the filtered signals, the instantaneous ampli-
tude Â and argument Φ̂, which are given by

Âj,ω,e(t) =
√
<2(Fj,ω,e(t)) + =2(Fj,ω,e(t)), (3.2)

Φ̂j,ω,e(t) = atan2[=(Fj,ω,e(t)), <(Fj,ω,e(t))], (3.3)
(3.4)

with Φ̂j,ω,e(t) ∈ [−π, π).

The output of a sufficiently narrow bandpass filter can be approximated
by a sinusoidal whose frequency is the tuning frequency of the filter ω, and
whose argument can be expressed as Φ(t) = ωt + φ(t), where φ(t) = Φ(t) − ωt
is the phase of the signal. While it is sometimes necessary to work with the
phase instead of the argument of the signals, most phase-synchrony measures
are based on the phase difference φ1 − φ2 between two signals, thus one can
simply use Φ1 − Φ2 since the ωt terms cancel each other.

3.3 Instantaneous phase-lock measures

Here we propose two measures for in-phase synchrony (i.e., synchrony with a
phase difference of zero). As a convention, we will normalize all synchrony
measures between 0 and 1, so that 1 means perfect synchrony. All measures
presented in Section 2.3, with the exception of Mutual Information, follow this
convention.

3.3.1 Motivation

In 2003, David and Friston introduced a neural mass EEG model which simu-
lates the activity of populations of neurons, under the assumption that the state
of the population can be approximated with very few state variables [David and
Friston, 2003b]. According to this model, the EEG/MEG signals from two dis-
tant cortical areas will show a phase difference of 0 (in-phase) or π (anti-phase)
when there is a bidirectional coupling between the two areas. According to
David and Friston [2003a], and Varela et al. [2001], the proportion of recip-
rocal connections in the brain is very high, suggesting that EEG synchrony
may be predominantly in-phase and anti-phase synchrony. Moreover, there is
experimental evidence supporting the idea that the distribution of the phase
differences concentrates around zero during episodes of high synchrony (see, for
example, [Friston et al., 1997; Rodriguez et al., 1999]). Therefore, it makes sense
to consider as synchrony criterion the following: two signals with instantaneous
phases φ1(t) and φ2(t) are in synchrony when φ1(t) ≈ φ2(t) for all t in a given
time interval.
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Figure 3.1: Average MPD (estimated across all trials) between electrodes T5
and O2 of the Figures experiment at 8 Hz, where an increase of synchronization
can be observed after stimulus onset. Note that these results are very similar
to those obtained with PLS.

In Chapter 4 we will show that synchrony measures which are estimated
across a large time window, such as coherence and STPLS, may be contami-
nated by the dispersion of the phase at each electrode, which is not necessarily
related to the degree of synchrony between the pair of signals under study. For
this reason, we favor synchrony measures which are “instantaneous”, in the
sense that they are estimated from instantaneous values of the filtered signals
(disregarding that the filtering process itself reduces the time resolution). The
rest of this section deals with two synchrony measures specifically designed for
instantaneous in-phase couplings.

3.3.2 Mean Phase Difference

A straightforward instantaneous in-phase synchrony measure is simply the mag-
nitude of the phase difference |φ1(t)−φ2(t)|, which can be wrapped between −π
and π. This makes it easy to obtain a normalized measure based on the phase
difference:

µj,ω,e1,e2(t) = 1− 1
π
|wrap(φj,ω,e1(t)− φj,ω,e2(t))|, (3.5)

where wrap(φ) returns the angle φ wrapped to the interval [−π, π).

Figure 3.1 shows the synchronization values between sites T5 and O2, ob-
tained with MPD at 8 Hz. As in the previous examples (for coherence, PLS, and
STPLS), an increase of synchronization between these two electrodes is shown
in the post-stimulus segment. Moreover, these results are very similar to those
obtained with the PLS measure, even though PLS measures synchrony with a
consistent phase-lag (across trials) which is not necessarily zero. This will be
further discussed in Chapter 4.
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Figure 3.2: CPPD between electrodes T5 and O2 of the Figures experiment at 8
Hz. As with the other measures, an increase of synchronization can be observed
in the post-stimulus segment.

3.3.3 Cumulative Probability of Phase Difference

An alternative to the MPD measure consists on estimating the probability of
the phase difference being smaller (in absolute value) than some ε > 0. This
probability can be estimated across all trials for each t, ω, e1, and e2 as follows:

µω,e1,e2(t) =
1

Nr

Nr∑

j=1

I(|wrap(φj,ω,e1(t)− φj,ω,e2(t))| < ε). (3.6)

where I(P ) equals 1 if P is true, and zero otherwise.
This measure allows a quantification of the degree of synchrony (by means

of ε), regardless of any further transformation applied to the measure (such as
the significance analysis we perform). We have used ε = π/5 rad for our tests
(equivalent to 10 ms at 10 Hz), although one can also use a frequency-dependent
value of ε given in time units.

CPPD synchronization between electrodes T5 and O2 from the Figures ex-
periment is shown in Figure 3.2 (for ω = 8 Hz).

One can modify this measure to detect anti-phase synchrony (couplings
which show a phase difference of π). A simple example is given by:

µω,e1,e2(t) =
1

Nr

Nr∑

j=1

I(|wrap(φj,ω,e1(t)− φj,ω,e2(t)− π)| < ε). (3.7)

However, one must be careful not to confuse a decrease in synchrony with anti-
phase couplings. This may be done, for example, by using small values for ε.
Some preliminary results with anti-phase measures will be presented in Section
6.4.2.
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3.4 Significance estimation

Since we are interested in event-related activity, we must determine how signifi-
cant are the changes of synchrony with respect to the pre-stimulus segment. Fol-
lowing the procedure introduced by Marroquin to estimate the relative changes
of EEG amplitudes [Marroquin et al., 2004], we subtract the average synchrony
in the pre-stimulus segment in order to obtain the relative synchrony Xj,ω,e1,e2 :

Xj,ω,e1,e2(t) = µj,ω,e1,e2(t)−
1
Ts

Ts∑

t′=1

µj,ω,e1,e2(t
′), (3.8)

where Ts is the length of the pre-stimulus segment. Finally, we take the mean
relative synchrony across all trials:

Yω,e1,e2(t) =
1

Nr

Nr∑

j=1

Xj,ω,e1,e2(t). (3.9)

In the case of the CPPD measure (and also for Lachaux’s PLS), µω,e1,e2(t)
itself represents an average across trials, thus Y may be defined simply as

Yω,e1,e2(t) = Xω,e1,e2(t) = µω,e1,e2(t)−
1
Ts

Ts∑

t′=1

µω,e1,e2(t
′). (3.10)

Note that the mean of Yω,e1,e2 in the pre-stimulus is zero, for every ω, e1,
and e2. Positive values of Y represent synchrony increases with respect to the
baseline (pre-stimulus), and viceversa.

To facilitate interpretation, we would like to classify each value of the mean
relative synchrony in one of three classes:

• Significantly higher than the baseline(class c = 1). This corresponds to
values of Y which are significantly greater than zero.

• Significantly lower than the baseline (class c = −1), corresponding to
Y -values significantly lower than zero.

• No significant change (c = 0).

Here we will discuss two different ways to perform this classification.

3.4.1 Thresholded p-values from estimated distributions

A typical approach to determine the significance of the Y -values is the thresh-
olded p-value technique described in Section 2.4.3. In this case, the null popula-
tion consists of the Y values in the pre-stimulus segment (disregarding samples
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for t < 2σt, which may be influenced by border effects). With these samples
one can use kernel density estimation to construct the distribution p0 of Y in
the pre-stimulus, which can also be considered the distribution of Y given that
c = 0 (i.e., P (Y | c = 0)). Then one can estimate a significance index S for each
Y , based on the p-value, as follows:

Sω,e1,e2(t) =





1− p0(Y > Yω,e1,e2(t) | Y > 0) for Yω,e1,e2(t) > 0,

− (1− p0(Y < Yω,e1,e2(t) | Y < 0)) for Yω,e1,e2(t) < 0.
(3.11)

The conditional probabilities in Equation 3.11 can be computed from the
cumulative density function P0(Y ∗) = p0(Y < Y ∗) (see Section 2.4.3) as follows:

p0(Y > Yω,e1,e2(t) | Y > 0) =
1− P0(Yω,e1,e2)

1− P0(0)
, (3.12)

p0(Y < Yω,e1,e2(t) | Y < 0) =
P0(Yω,e1,e2)

P0(0)
. (3.13)

The significance indices represent the direction of the change of synchrony
with respect to the baseline (positive means increment, whereas negative means
decrement), and the degree of significance of these changes. They can be used
directly to obtain the class label field c by simply comparing them with a sig-
nificance threshold (1− α):

cω,e1,e2(t) =





1 if Sω,e1,e2(t) > (1− α),

−1 if Sω,e1,e2(t) < −(1− α),

0 otherwise.

(3.14)

3.4.2 Bayesian classification of significant changes in syn-
chrony

A powerful technique for classification problems consists of Bayesian estimation
with a prior Markov Random Field (MRF) model [Marroquin, 1987]. With this
method, one can model the class field cω,e1,e2,t as a random field with a prior
Gibbs distribution of the form

PMRF (c) =
1
Z

exp

[
−λ

∑

C

VC(c)

]
, (3.15)

where Z is a normalizing constant and VC is a potential function that depends
only on the values of the sites belonging to the clique C (see [Marroquin, 1987,
2001] for more details). For a classification problem, where c is discrete, a
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popular model is the Ising model, which enforces c to be piece-wise constant.
If we consider a first-order neighborhood system, whose cliques are single sites
and nearest-neighbor pairs of sites, the Ising potentials are given by:

Vr,s(c) =
{ −1, if cr = cs

1, if cr 6= cs
, (3.16)

where r and s are nearest neighbors. In our case, r and s are generally 4-
tuples of the form r = (ω, e1, e2, t); however, at this point we are only interested
in modeling persistence in time, although persistence across frequencies and
spatial regularization could be taken into account to attempt an automated
segmentation process.

The label field c is assumed to be Markovian (with a first-order Ising model)
with distribution

Pc(c) =
1
Z

exp

[
−λ

∑
<r,s>

Vr,s(c) +
∑

r

log αcr

]
,

where αk represents the global prior probability αk = P (cr = k). Besides the
prior distribution for c, we also need the likelihood P (Y | c), which can be
written as

P (Y | c) =
∏
r

P (Yr | cr) = exp

[∑
r

log P (Yr | cr)

]
. (3.17)

Using Bayes rule, the posterior distribution of c given Y can be calculated as

P (c | Y ) =
1
Z ′

exp

[∑
r

log hr(cr)− λ
∑

<r,s>

Vr,s(c)

]
, (3.18)

where Z ′ is a normalization constant and hr(k) = P (Yr | cr = k)αk.

Given the estimator ĉ and the true (unknown) field c, one can define a cost
function C(c, ĉ) and find the optimal ĉ by minimizing the expected value of
C(c, ĉ). Since c is discrete, a suitable cost function given by Marroquin is

C(c, ĉ) =
∑

r

[1− δ(cr − ĉr)] , (3.19)

and its expected value would be given by

E [C(c, ĉ)] =
∑

c

C(c, ĉ)P (c | Y )

=
∑

c

∑
r

[1− δ(cr − ĉr)] P (c | Y )

= K −
∑

r

∑

c:cr=ĉr

P (c | Y ). (3.20)
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The posterior marginal distribution for site r is defined as:

πr(k) =
∑

c:cr=k

P (c | Y ). (3.21)

Thus the optimal estimator ĉ (which minimizes E[C(c, ĉ)]) can be found by
maximizing πr(ĉr) for each r. This estimator is known as the Maximizer of Pos-
terior Marginals (MPM) estimator and is usually approximated using stochastic
Markov-chain methods such as Metropolis or the Gibbs sampler. These algo-
rithms, however, are computationally expensive and require an unknown num-
ber of iterations, which makes them less than adequate for our multidimensional
data set. A better solution consists on approximating the posterior marginal
distributions with the empirical marginals pr(k) [Marroquin et al., 2001]. It can
be shown that the pr vectors form a MRF with the same neighborhood system
as c, thus the distribution of p is given by

Pp(p) =
1
Zp

e−U(p), (3.22)

where, for a first-order neighborhood system, U(p) can be written as

U(p) =
∑

r

|pr − p̂r|2 + λ′
∑

<r,s>

|pr − ps|2, (3.23)

with p̂r(k) = hr(k)/
∑

k′ hr(k′).

If c follows the Ising model, it can be shown that the field p can be modeled
as a set of decoupled membrane models p(k) = {pr(k), ∀r} for k = −1, 0, 1.
Therefore, the optimal p is obtained by minimizing, for each layer k, the energy
function Uk(p) given by

Uk(p) =
∑

r

(pr(k)− ˆpr(k))2 + λ′
∑

<r,s>

(pr(k)− ps(k))2. (3.24)

Since each p(k) is continuous, Uk(p) can be minimized by solving the linear
system obtained from equating the partial derivatives of Uk with respect to
pr(k) to zero. However, the optimal p(k) is a smoothed version of p̂(k), thus
one can achieve a similar result by simply low-pass filtering each p̂(k) with a
Gaussian kernel (for more details see [Marroquin et al., 1997]). Once we have p
we can obtain the approximated MPM estimator as

cr = argmaxk{pr(k)}. (3.25)

3.4.3 Estimation of prior distributions and likelihoods

For now, we are only interested in modeling persistence in time, thus we may
estimate the time series cω,e1,e2(t) = cω,e1,e2,t in a decoupled manner for each
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ω, e1, and e2. To simplify things in this section, we will consider a fixed frequency
ω and electrode pair (e1, e2) and only keep the time subindex.

In order to calculate ht(k) (and thus pt(k)) we need the prior probabilities
αk = P (c = k) and likelihoods P (Yt | c = k). These can be estimated from the
data if we consider that the complete distribution PY (Yt) can be expressed as:

PY (Yt) =
1∑

k=−1

αkP (Yt | c = k), (3.26)

and also consider the following assumptions:

• P (Yt | c = 0) may be estimated empirically from the pre-stimulus data.

• P (Yt | c = 1) = 0 for Y ≤ 0.

• P (Yt | c = −1) = 0 for Y ≥ 0.

With these assumptions, we can obtain P (c = 0) from Equation (3.26) as
follows:

α0 =
PY (0)

P (0 | c = 0)
(3.27)

and also

ht(0) = α0P (Yt | c = 0) (3.28)

ht(1) =
{

PY (Yt)− ht(0), Yt > 0
0, Yt ≤ 0 (3.29)

ht(−1) =
{

PY (Yt)− ht(0), Yt < 0
0, Yt ≥ 0 (3.30)

PY (Yt) and P (Yt | c = 0) can be estimated from the data Y using non-
parametric kernel estimation. PY (Yt) is estimated using the full time segment,
whereas P (Yt | c = 0) considers only the pre-stimulus segment.

The actual classification procedure for significative synchrony changes is per-
formed (for each frequency ω and electrode pair (e1, e2)) as follows:

1. Estimate the pre-stimulus distribution P0(Y ) and the full distribution
PY (Y ) using kernel density estimation with bandwidth given by Silver-
man’s rule of thumb [Silverman, 1986].

2. Estimate α0 = P (c = 0) = P0(0)/PY (0).

3. For each t, calculate ht(k) for k = −1, 0, 1 as given by Equations (3.28,
3.29, and 3.30).

4. Normalize ht to obtain p̂t.
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Figure 3.3: Granularity functions Gw(σg) for w = 10, 15, 20, 25 ms. We are
interested in the lowest value of σg for which Gw(σg) < 0.05.

5. Obtain p(k) by convolving p̂(k) with a Gaussian kernel g. The width σg

of the kernel controls the granularity of the c field (see below).

6. Approximate the MPM estimator by ct = argmaxkpt(k) for all t.

3.4.4 Granularity and choice of σg

When approximating p(k), we need to use an adequate width σg for the Gaussian
kernel to filter out shorter homogeneous segments, which may not be significant
in terms of persistence, and would instead break a longer segment. In particular,
one would like that only those synchronous episodes with a duration greater than
a minimum (physiologically motivated) value should be considered significant.
According to studies related, for example, with the formation of short term
memory [Jensen et al., 1996; Burle et al., 2000], this minimum value is in the
order of one gamma oscillation, that is, around 20-50 ms.

To achieve this, one can define a granularity function G(σg) for a given EEG
dataset and see how it behaves with respect to σg. Our choice for G is defined
as follows: for a class time series cω,e1,e2 = {cω,e1,e2(t)} we define the number
of homogeneous segments nω,e1,e2 as

nω,e1,e2 =
T∑

t=Ts+1

1 + [1− δ (cω,e1,e2(t) = cω,e1,e2(t− 1))] , (3.31)

where δ(x) is the Kronecker delta function. Note that the sum is taken only on
the post-stimulus segment. This is because we consider the pre-stimulus to be
a single segment with class c = 0.
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w (ms) σg (ms)
10 4
15 7.5
20 11.5
25 16.5
50 76

Table 3.1: Values of σg (within a resolution of 0.5 ms) required to obtain
Gw(σg) < 0.05, for various values of the granularity length w.

We also define mω,e1,e2(w) as the number of homogeneous segments whose
length is less than w (the desired granularity length). The granularity function
is then given by

Gw(σg) = E

[
mω,e1,e2(w)

nω,e1,e2

]
, (3.32)

where the expected value is estimated across all frequencies and electrode pairs.
Gw(σg) estimates the probability of having segments with length shorter than
w for a given value of σg. One can then specify a value for w and find σg

such that, for example, less than 5% of the segments have length less than w
(i.e., Gw(σg) < 0.05). Figure 3.3 shows the granularity function graphs for
w = 10, 15, 20, 25 ms for the Figures experiment using the MPD measure.

Table 3.1 shows the value of σg required for having less than 5% segments
with length less than w = 10, 15, 20, 25, 50 ms. One can see that for values
of w greater than 25-30 ms, the required σg grows considerably; however, the
resulting label field c does not seem to be seriously affected, even if relatively
large values of σg are used. In other words, the Bayesian method shown above
seems to be very robust with respect to the kernel width σg. As an example,
Table 3.2 shows the correlations, for the Figures experiment, between pairs of
class fields estimated with different values of σg (using the MPD measure).
All correlations corresponding to values of σg between 4 and 16.5 ms (which
correspond to values of w between 10 and 25 ms) are greater than 0.97, and
correlations involving σg = 76 ms (w = 50 ms) are greater than 0.91.

These results suggests that one can loosely choose σg from a relatively wide
range of values (roughly between 10 and 50 ms). In particular, we have used
σg = 25 ms for all our tests, and all the experiments.

3.4.5 Comparison between Bayesian estimation and thres-
holded p-values

We have estimated, for the MPD and CPPD measures and for each exper-
iment, the threshold which maximizes the correlation between the class label
field obtained from the Bayesian method and the one obtained from thresholded
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4 ms 7.5 ms 11.5 ms 16.5 ms 76 ms
4 ms 1.000 0.991 0.983 0.974 0.912
7.5 ms 0.991 1.000 0.991 0.982 0.916
11.5 ms 0.983 0.991 1.000 0.990 0.921
16.5 ms 0.974 0.982 0.990 1.000 0.928
76 ms 0.912 0.916 0.921 0.928 1.000

Table 3.2: Correlations between pairs of class fields with different values of σg

(shown in bold typeface).

Figures Words Go NoGo Stern-3 Stern-5
MPD Threshold 0.11 0.09 0.04 0.03 0.04 0.04
CPPD Threshold 0.06 0.06 0.01 0.01 0.02 0.02

Table 3.3: Threshold required to maximize the correlation between the thresh-
olded p-values classification, and the Bayesian classification (with σg = 16.5
ms). The correlation is shown for each test experiment, and for the MPD and
CPPD measures.

p-values (from the estimated distribution). The results are shown in the Table
3.3.

This means that the Bayesian approach yields results roughly equivalent
to thresholded p-values with a threshold between 0.01 and 0.1, but this value
has to be adjusted for each experiment and it is not clear how this should
be done, whereas the Bayesian method permits one to specify the granularity
independently of the particular experiment.

The correlations shown above change very little with respect to the gran-
ularity value, which is expected, since the Bayesian method is barely sensitive
to the granularity parameter. For example, for the Figures experiment with
the MPD measure, granularity values of 10, 15, 20, and 25 ms yield roughly
equivalent results to a p-value threshold of 0.11, while a granularity of about
50ms corresponds to a threshold of 0.10. This robustness with respect to the
granularity parameter is one of the reasons we chose the Bayesian approach.

3.5 Visualization

Synchrony data is in a four-dimensional space. Because of this, the visualization
problem is not a trivial one, especially since one would like to keep as much
detail as possible while displaying the data. It is very common to either focus
on specific points in the time-frequency plane or condense the data by averaging
in one or more dimensions.
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Figure 3.4: Multitoposcopic displays for a 120-channel dataset using the MPD
measure: (a) uses only channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7,
F8, T3, T4, T5, T6, Fz, Cz, and Pz from the 10/20 system: red regions represent
electrode pairs that show a significant increase in synchrony (c = 1), while
green regions correspond to significant synchrony decreases (c = −1). Graphs
(b) and (c) use the 120 channels grouped in 19 cortical areas corresponding to
the Voronoi partition whose centers are the electrodes used in (a). For each
area, one can plot a toposcope representing a statistic of the synchrony classes
between each of the 120 electrodes and the electrodes within the area: (b) uses
the average class c̄ (which may be between -1 and 1), whereas (c) uses the class
mode ĉ (see text for details). The 3 multitoposcopes represent the SP obtained
at t=515 ms and f=11 Hz during a Go/NoGo experiment (see [Harmony et al.,
2006] for details); the rest of the examples presented in this paper correspond
to the Figures experiment described in the text.

For a fixed time t and frequency ω it is possible to show the distribution of the
synchrony pattern (SP) given by the class values cω,e1,e2,t in a multitoposcopic
display, in which for each electrode e1 one displays a head diagram (also called
“toposcope”) - within a bigger head - that shows the distribution of c across all
sites e2 (an example of this display can be seen in Figure 3.4a).

A problem arises when one deals with high electrode density recordings since
only so many toposcopes can be displayed within the bigger head. One can use
interpolation techniques to display high-density data in a single toposcope (in
particular, we use a Voronoi partition [Aurenhammer, 1991] obtained by assign-
ing each pixel in the toposcope the class corresponding to the nearest electrode),
but the number of toposcopes may have to be reduced. One possibility consists
in grouping the electrodes in Ng cortical areas {G1, . . . , GNg

}, using again a
Voronoi partition whose centers are, for example, the sites Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz of the 10/20
system. One can then plot a toposcope for each group Gk computing, for each
high-resolution electrode, the “most representative” synchrony class between
this electrode and the electrodes in Gk. This most representative class may be
computed in several ways; for example, the average class c̄ of electrode e to

47



group Gk, which is computed as:

c̄ω,k,e,t =
1
|Gk|

∑

e′∈Gk

cω,e′,e,t (3.33)

or the class mode ĉ, which is computed as:

ĉω,k,e,t = arg maxq∈{−1,0,1}

{ ∑

e′∈Gk

δ(cω,e,e′,t − q)

}
, (3.34)

where δ is the Kronecker delta function. An example of multitoposcopes cor-
responding to c̄ and ĉ are shown in Figures 3.4b and 3.4c. More sophisticated
methods could involve electrode clustering or TFT regularization; however, they
are beyond the scope of this work.

Multitoposcopic displays are useful to show a detailed connectivity pattern
for a fixed time and frequency; however, it is important to visualize larger
regions of the time-frequency plane in order to localize zones of interest where
the synchrony pattern remains almost constant and might be related to specific
cognitive processes. Following the procedure given by [Marroquin et al., 2004] to
analyze relative amplitude changes, we can use a Time-Frequency-Topography
(TFT) display to present the data by reducing only one spatial dimension. We
do this not by averaging but counting, for each electrode e, the number of
electrodes that have significantly increased or decreased their synchrony with e.
In other words, we can build a synchrony increase histogram (SIH) given by

H+
ω,e(t) =

Ne∑

e′=1

δ(cω,e,e′,t − 1), (3.35)

where δ(x) is the Kronecker delta function. H+
ω,e(t) is the number of significantly

stronger couplings (with respect to the pre-stimulus segment) for electrode e at
time t and frequency ω. This can be thought as a degree of connectivity involving
electrode e relative to the pre-stimulus.

Similarly, we can define a synchrony decrease histogram (SDH) as

H−
ω,e(t) =

Ne∑

e′=1

δ(cω,e,e′,t − (−1)), (3.36)

These histograms can be presented in a TFT display as shown in Figure 3.5.

3.5.1 Partitioned TF synchrony maps

The TFT visualization system provides at the same time a detailed view that
shows which regions of the cortex are involved in synchronous processes at
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Figure 3.5: Synchrony histograms for the Figures experiment displayed as Time-
Frequency-Topography (TFT) maps. The left and right maps show the syn-
chrony increase and decrease histograms, respectively, for the MPD measure.
The color scale represents the number of electrodes whose synchronization with
a given electrode e increases (left) or decreases (right) significatively.

any time and frequency, and also a condensed view where one can see larger
Time-Frequency regions which share the same synchronization pattern. This
allows one to easily perform a manual partition of the TF plane where each
region is assigned a representative multitoposcopic pattern; for example, the
representative SP can be obtained by computing, for each electrode pair, the
average class or the class mode of that pair across the TF region. Another
option is to choose a fixed point within the TF region (e.g., the region center)
and use the SP corresponding to that point to represent the region.

An example of manually partitioned MPD maps is shown in Figure 3.6 for
the Figures experiment.

It is also possible to produce an automated partition by frequency bands
(delta, theta, alpha, etc.), and at regular time intervals. An example of this is
shown in Figure 3.7. The frequency bands are delta (1 to 3 Hz), theta (4 to
7 Hz), alpha (8 to 12 Hz) and low beta (13 to 18 Hz) with a segment interval
of 300 ms. In the lower-left corner of each segment we show the estimated
variance of cω,e,e′,t. For regions with high variance , the representative SP may
not be consistent across region; however, one can subdivide the region for a
more detailed analysis.
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Figure 3.6: Manually-segmented MPD synchrony map for the Figures experi-
ment. The left map uses the average class (represented by the color scale) for
each electrode pair to construct the representative SP’s, whereas the right map
uses the class mode.

Figure 3.7: Automatically partitioned MPD maps for the Figures experiment
(using the average class of each TF region as representative). Regions with
high-variance can be subdivided into smaller, more consistent regions.
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3.6 Gabor filters vs Sinusoidal filters

We have performed a series of tests in order to demonstrate the improvement
of SQF’s over Gabor filters for synchrony estimation. From Figure 2.1 one can
see that the distortion produced by the Gabor filter (at tuning frequencies less
than 6 Hz) consists of an oscillation at twice the tuning frequency. For these
tests we applied the synchrony measure (based on ∆Φ) and statistical analysis
described below. Using Gabor filters, the sensitivity of the synchrony measure
shows a cyclic dependence on the time t, which corresponds to the distortions
in the phase observed in Figure 2.1.

The simulated data used for the tests is obtained from a very simple model
which consists of a 2 Hz sinusoidal plus noise. The signals are given by:

Vj,e = cos(2πf0t + φj,e) + Rj,e(r, t), φj,e ∼ N (0, σ), (3.37)

where j is the trial number, e the electrode index, f0 = 2Hz is the frequency of
the sinusoidal, and σ is the standard deviation of the distribution of the phases,
which controls the degree of synchrony between the signals. The noise function
Rj,e(r, t) depends on the “noise level” r. For our tests we used two electrodes
(e = 1, 2), σpre = π/10 (pre-stimulus σ), and σpost = π/20 (post-stimulus σ).
Since σpre > σpost, we are thus modeling an increase of synchrony in the full
post-stimulus segment. We have generated 20 datasets with 50 trials each. For
each dataset we perform the procedure described below in order to obtain a label
field cω,e1,e2(t), which indicates if synchrony between e1 and e2 at a frequency ω
is significantly higher (c = 1), lower (c = −1), or equal (c = 0) with respect to
the pre-stimulus average. Focusing only on frequency ω = 2πf0 and electrode
pair < 1, 2 >, we expect to obtain c(t) = 1 for all t in the post-stimulus.

For the first test we used Gaussian noise given by

Rj,e(r, t) ∼ N (0, r). (3.38)

With a noise level r = 0.5, the average class c̄(t) across all datasets is shown
in Figure 3.8 (a). The blue line represents the results obtained using Gabor
filters, whereas the red line corresponds to sinusoidal quadrature filters. The
oscillating distortion is clearly present with the Gabor filters, and it corresponds
to a frequency of 4 Hz (twice the tuning frequency). Figure 3.8 (b) shows the
proportion of detected couplings (c(t) = 1) in the post-stimulus segment with
respect to the noise level r - these results are also averaged across the 20 datasets.
The proportion should remain close to 1, however, Gabor filters clearly start to
fail with r > 0.3.

The second test uses a sum of interfering sine waves as noise function:

Rj,e(r, t) =
∑

f !=f0

af

f
cos(2πft + φf ), af ∼ U(0, r), φf ∼ U(0, 2π). (3.39)

The sum is taken across frequencies from 1 to 50 Hz, except the frequency of
interest f0, and the components are attenuated according to their frequency.
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Figure 3.8: Comparison between sinusoidal and Gabor filters using simulated
data with Gaussian noise for (a) and (b), and with interference of sinusoidals
for (c) and (d). Graphs (a) and (c) show the average class c̄(t) computed across
20 datasets, whereas (b) and (d) show the proportion of detected couplings with
respect to the noise level.

As in the previous test, we calculated the average class c̄ and the proportion
of detected couplings with respect to the noise level. The results, presented in
Figure 3.8 (c) and (d), show the same differences as in the previous example.

It is worth mentioning that using real EEG datasets (such as the Figure
experiment signals), there are clear differences between the results obtained
with SQF’s and those obtained from Gabor filters in the first 6 Hz. The tests
with simulated data indicate that the results with Gabor filters may not be
reliable in the delta and theta bands.

3.7 Reducing volume conduction effects

In Section 1.6 we discussed the problem of volume conduction in EEG, which
may introduce spurious correlations in the EEG signals. One of the best solu-
tions so far, as reported by Nunez et al. [1995; 1997; 2000], consists in estimating
the Surface Laplacian (SL) of the raw potentials; however, a high spatial sam-
pling rate (e.g, more than 64 electrodes distributed across the whole surface) is
required to obtain an accurate SL, and even in that case, the phase of the SL
signals may be very sensitive to noise [Junghöfer et al., 1999; Hagemann et al.,
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2001]. On the other hand, most of our datasets contain only 19 or 20 channels,
which is not enough for a reliable SL estimation.

Another solution, developed in collaboration with Joaqúın Peña, is to use
instead the phase of a new set of signals which are projections of the scalp
potentials to cortical sites located directly below the actual electrodes. These
signals may be obtained by placing dipoles (sources) in the cortical sites and
solving the corresponding inverse problem.

The relation between the potentials and the current density at each source
is given by:

Φ = KJ, (3.40)

where Φ is a vector (of length Ne) of potentials measured at each electrode,
J = (j1, . . . , jNs) is comprised of the current densities jk = (jkx, jky, jkz)T at
each source k = 1, . . . , Ns, and K is an Ne × 3Ns matrix (the lead field),
which transforms current densities into surface potentials [Malmivuo and Plon-
sey, 1995; Pascual-Marqui, 1999]. K depends on the electrode positions, the
physical and geometrical properties of the volume conductor, and the position
of the source dipoles. In particular, we compute K using a three concentric
sphere head model [Zhang, 1995].

The inverse problem consists in finding J, given Φ and K. This is typically
an ill-posed problem, since the number of unknowns (3Ns) is usually larger than
the number of equations (Ne). In order to make this problem well posed, we
place one dipole in the cortex area directly below each electrode, with radial
direction (i.e., perpendicular to the surface and pointing outwards).

In general, one can write the current densities for each source as jk = αkqk,
|qk| = 1, where qk, is the direction of the k-th dipole, and αk its strength. One
can also write the lead field K as:

K =




k11 k12 · · · k1Ns

k21 k22 · · · k2Ns

...
...

...
kNe1 kNe2 · · · kNeNs


 , (3.41)

with kij = [ki(3j) ki(3j+1) ki(3j+2)].

The surface potentials are thus given by

Φ =




k11α1q1 + k12α2q2 + · · ·+ k1NsαNsqNs

k21α1q1 + k22α2q2 + · · ·+ k2NsαNsqNs

...
kNe1α1q1 + kNe2α2q2 + · · ·+ kNeNsαNsqNs


 (3.42)
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Figure 3.9: (a) Dipole groups under each electrode within a three concentric
sphere model. (b) Scalp potentials obtained with the forward equation and the
given group strengths.

=




k11q1 k12q2 · · · k1NsqNs

k21q1 k22q2 · · · k2NsqNs

...
...

...
kNe1q1 kNe2q2 · · · kNeNsqNs




︸ ︷︷ ︸




α1

α2

...
αNs




︸ ︷︷ ︸
L α

If the dipole directions qk, k = 1, . . . , Ns are known, then one can compute
the matrix L. Moreover, if there is only one source per electrode (i.e., Ns = Ne),
then the problem becomes well-posed as the number of unknowns (i.e., the αk’s)
equals the number of equations. In this case, L is square and the inverse problem
has a unique solution given by:

α̂ = L†Φ. (3.43)

Where L† is, in general, the pseudoinverse of L [Vogel, 2002], which can be
obtained, for example, by singular value decomposition (SVD - [Press et al.,
1992]).

Instead of a single dipole per electrode, one can also place a group of cortical
dipoles (for each recording site) whose strengths decrease exponentially with the
distance to the central dipole (the one located right below the electrode - see
Figure 3.9a). In other words, the amplitude of all the dipoles in the group is
determined by the strength of the central dipole (the “group strength”). The
inverse problem can be solved in a similar manner: one can write the potentials
Φ as the product of a square matrix L and the vector of group strengths α, where
L (and its pseudoinverse) can be computed. Figure 3.9b shows an example of
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Figure 3.10: Examples of synchrony patterns obtained with scalp potentials and
their corresponding projected signals (see text for details).

scalp potentials obtained from the given group strengths, using the forward
model (Φ = Lα).

The projection of scalp potentials to the cortical group strengths reduces the
conductor effects of the scalp and skull, and provides better spatial localization
than the raw scalp potentials, but with a magnitude large enough to obtain
reliable phase estimations. Figures 3.10a and 3.10b show the resulting synchrony
patterns obtained for synthetic signals using raw potentials (3.10a) and the
projected signals (3.10b). The test signals were obtained by placing one dipole
near F3 and another between P4 and T6 of the 10/20 system, whose output is
a sinusoidal signal, and solving the forward problem to obtain scalp readings.
Noise was added to all electrode readings. The dipoles are unsynchronized (out
of phase) in the pre-stimulus segment (not shown) and in perfect synchrony in
the post-stimulus. The graphs show significant increment (red) or decrement
(green) in synchrony for all electrode pairs. The synchrony pattern obtained
from projected signals clearly shows a better localization of the synchronized
regions. Another example, with real EEG signals from the Figures experiment,
is shown in Figures 3.10c (scalp potentials) and 3.10d (cortical projections).
Note that, in this case, synchronous activity also appears to be smeared when
using potentials: sites P4 and Oz show a significant increment in synchrony
with almost every other site; however, most of these couplings do not show
when using projected signals, possibly indicating that they were spurious.
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Chapter 4

Comparative study between
synchrony measures

4.1 Measure comparisons in the literature

A few works have focused on the evaluation of different synchronization mea-
sures, using real and simulated EEG data. In one of these papers ([Quian-
Quiroga et al., 2002]), interaction between the left and right hemispheres of a
rat are analyzed with various synchrony measures. This includes both linear
(correlation / coherence) and non-linear (generalized synchronization, mutual
information, phase-locking) interdependences.

According to Quian-Quiroga, all the measures (with the exception of MI)
ranked the synchronization levels in the same way; that is, the periods of low
and high synchrony, respectively, were similarly distinguished by every measure.
However, the separation between low and high synchrony periods was more
noticeable with non-linear measures (GS and STPLS) than with coherence. This
may indicate that most couplings have a non-linear nature (e.g. phase-locking,
as Varela suggests). In the case of mutual information, Quian-Quiroga et al.
used a time-embedding technique to transform the data to a m-dimensional
space, which made it difficult to obtain a good estimation of the joint entropy
as the joint probability matrix was very sparse. Because of this, it was not
possible to obtain robust estimations of the MI, which dramatically depended
on m.

In 2003, David and Friston introduced a neural mass EEG model, which
simulates the activity of populations of neurons, under the assumption that the
state of the population can be approximated with very few state variables [David
and Friston, 2003b]. This model is based on a simpler model ([Jansen and Rit,
1995]) that is able to produce any of the common EEG rhythms (alpha, beta,
etc.).

In the simulations performed by David et al., it was observed that when both
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areas were bidirectionally coupled, the phase-shift between the two signals was
equal to zero, and it was shown that for bidirectional couplings, the phase-shift
is equal to either 0 or π, depending on the propagation delay. According to
David and Friston [2003b] and Varela et al. [2001], the proportion of reciprocal
connections in the brain is very high. This supports the findings in [Friston
et al., 1997; Rodriguez et al., 1999], where a tendency of the phase-differences
towards zero were associated with synchronous episodes (see Sections 2.3.1 and
2.3.2).

In their following article ([David et al., 2004]), David and Friston tested
various synchronization measures using simulated data. The measures were:
cross-correlation (with zero time-lag), mutual information, generalized synchro-
nization, and the single-trial phase-locking value. The simulations were obtained
with their neural mass model, using a symmetric configuration for a bidirectional
coupling, and a parameter k ∈ [0, 1], which specifies the coupling strength. A
series of surrogate (uncoupled) signals were generated with k = 0 in order to
obtain the null distributions of the synchrony measures.

In a first analysis, the coupling sensitivity of the various measures was tested
using broadband signals, as a function of the coupling strength k. While all
measures increased accordingly with k, GS showed a better response to weak
couplings (k < 0.125), while MI was better for strong couplings. The next
analysis evaluates the response to the time-window size used to estimate the
measures. The window was varied from 0.2 to 2 s, and the z-scores (with
respect to the null distribution from an uncoupled model) were estimated for
each measure. In this case, GS resulted to be the most reliable estimator.

For narrow-band analysis, the coupled and uncoupled signals were band-
pass filtered from 2 to 50 Hz, each 2 Hz, and the synchrony measures were
estimated for each frequency. The resulting z-scores were plotted as a function
of frequency. The graphs for all measures had a similar shape; however, the
z-scores for mutual information were much higher, suggesting that MI may be
more sensitive to frequency-specific synchrony.

The next analysis focused on the sensitivity of the measures to non-linear
couplings. In this case, the surrogate population is designed to preserve the lin-
ear properties of the original data, while destroying the non-linear dependencies
(see [David et al., 2004] for details). This method was applied to the simulated
broadband signals, and the synchrony measures were estimated as a function
of the coupling strength. Cross-correlation and mutual information were insen-
sitive to non-linear couplings, while with GS and phase synchronization, the
non-linearities accounted for a small fraction of the synchrony value.

David et al. concluded that although the results of the four measures tested
were very similar, one should be careful when studying functional connectivity
using electrophysiological signals. One should not make too many assumptions
about the type of interactions; therefore, instead of relying on a single measure,
it is more advisable to apply various measures, each of which is sensitive to
different aspects of synchronization.
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4.2 Comparison of synchrony measures

The procedure described in Chapter 3 can be used with any of the synchrony
measures presented in Section 2.3. In particular, we have tested the PLS,
STPLS, and coherence measures. GS and MI have not been implemented for
the reasons explained in Sections 2.3.4 and 2.3.5.

For the rest of this chapter, we will present various interesting results which
may help in determining the advantages and disadvantages of each measure.

4.2.1 TFT Synchrony maps

We have computed the following measures for the Figures experiment:

• Mean Phase Difference (MPD)

• Cumulative Probability of Phase Difference (CPPD), with ε = π/5 rad.

• Lachaux’s Phase Locking Statistic (PLS)

• Single-Trial PLS (STPLS), with a window size of 105 ms (w = 10 samples).

• Coherence, with a window size of 105 ms.

Figure 4.1 show the SIH’s for all the measures (full SIH, SDH, and parti-
tioned maps will be presented in Appendix ??).

From these maps, one can observe that CPPD and PLS produce similar
results to the MPD measure. On the other hand, STPLS and coherence yield
similar results themselves but different from MPD. This suggests that the syn-
chrony measures may be divided in two groups.

4.2.2 Correlation between measures

Given two synchrony measures, µ1 and µ2, one can estimate the class label
fields c1 and c2, and compute a correlation measure between the two class fields.
Typically, the correlation between two random variables X and Y is given by

cor(X, Y ) =
E [(X − EX)(Y − EY )]

σXσY
, (4.1)

where E[·] denotes the expected value, and σX is the standard deviation of X.
Using this correlation measure, we have computed the degree of interdepen-
dence between each pair of measures for the Figures experiment. The results
are presented in Table 4.1, where two groups are clearly defined by high cor-
relation values: one group consisting of MPD, CPPD, and PLS, and the other
consisting of STPLS and coherence. Similar results have been obtained with
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Figure 4.1: Synchrony increase histograms for the Figures experiment using
the five synchrony measures: MPD, CPPD, PLS, STPLS, and coherence. The
bottom-right graph corresponds to the TFT map of significant changes in the
LPC measure (red represents significant increases, whereas green corresponds
to significant decreases) - see text for details.
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Table 4.1: Correlation (as defined by Equation 4.1) between pairs of synchrony
measures.

Table 4.2: Probability of equal class (as defined by Equation 4.2) between pairs
of synchrony measures.

other experiments (besides the Figures experiment) and will be presented in
Appendix ??.

Another dependence measure, which may be more adequate for class data,
can be defined as the probability of c1

ω,e1,e2,t = c2
ω,e1,e2,t (probability of equal

class - PEC), which can be estimated as

pec(µ1, µ2) =
1

NfN2
e Nt

∑
ω,e1,e2,t

δ(c1
ω,e1,e2,t − c2

ω,e1,e2,t), (4.2)

where δ is the Kronecker delta function. Table 4.2 shows the dependence values
for all pairs of measures using Equation 4.2; the two groups of measures can
also be distinguished here.

It is worth noting that STPLS and coherence are computed across a time
window, whereas the other measures are “instantaneous”, in the sense that they
only use the phase difference at a single time point. This may be a determining
factor in the behavior of a given measure.

One interesting fact is the high correlation between MPD and PLS. By look-
ing at Equation (2.15) one can see that PLS actually measures the consistency
of the phase difference across all trials. A high correlation between MPD and
PLS suggests that the processes that result in high in-phase synchronization are
fairly consistent across trials and subjects, and thus may be related to the task.

Furthermore, the CPPD measure is also highly correlated to the MPD, sug-
gesting that synchronization effectively happens with near-zero phase difference.
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This is in accordance with the neural mass model proposed by David and Fris-
ton [2003a] and other works ([Friston et al., 1997; Rodriguez et al., 1999]) which
have also found zero-centered phase difference distributions during synchronous
episodes between two electrodes.

4.2.3 Response to induced activity

One could argue that instantaneous synchrony measures (such as MPD) may be
more sensitive to variations in the latency of event-related responses across trials
(latency jitter); in other words, these measures may not respond adequately to
induced activity.

Typically, induced activity is revealed by performing a time-frequency de-
composition of each trial, and averaging a positive definite function of the filters’
output (e.g., the power) across all trials, whereas evoked activity is obtained by
first averaging the raw signals across trials, and then applying a positive defi-
nite function (power analysis) to the average signals [David et al., 2006]. The
difference is that in the former case (induced responses) there will be no can-
celations during averaging, whereas in the latter (evoked) case, there may be
cancelations due to differences in sign across trials. It is clear then, that the
methodology presented in Chapter 3 is basically an induced response analysis,
where the positive definite function is the synchrony measure (we may call it
“induced synchrony”), instead of the power; this function is averaged across
trials and then the baseline is subtracted. This suggests that the analysis pro-
cedure, with any of the synchrony measures previously presented, should be at
least as sensitive to induced responses as the typical average-power analysis. Of
course, because of additional averaging across time, STPLS and coherence may
be more robust to larger amounts of latency jitter.

In Section 6.4.1 we will briefly discuss some preliminary results about the
relationship between evoked potentials and induced synchrony, and the mecha-
nisms which generate both types of activity.

4.2.4 Local phase dispersion

Let us recall the equation for Lachaux’s single-trial phase-locking statistic:

STPLSe1,e2(t) =
1

2w + 1

∣∣∣∣∣
t+w∑

t′=t−w

exp [i (φe1(t
′)− φe2(t

′))]

∣∣∣∣∣ . (4.3)

The STPLS is equal to one minus the dispersion of the phase difference be-
tween the two electrodes under study, estimated across a time window centered
at t. Note that if one of the phases remains relatively constant within the time
window, then the STPLS will be approximately equal to one minus the disper-
sion of the other phase. This suggests that it may be interesting to study the
correlation between the local phase dispersion and each synchrony measure. To
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MPD CPPD PLS STPLS Coherence
LPC 0.091 0.035 0.131 0.698 0.673

Power -0.028 -0.122 0.067 0.266 0.273

Table 4.3: Correlation between significance indexes of LPC/Power changes, and
the average class at each electrode, for each synchrony measure.

do this, one can define a local phase constancy (LPC) measure as the average
across trials of one minus the dispersion of the phase at each electrode. The
LPC is thus given by

LPCω,e(t) =
1

Nr

Nr∑

j=1

1
2w + 1

∣∣∣∣∣
∑

t′=t−w

t + w exp [iφj,ω,e]

∣∣∣∣∣ . (4.4)

One can then estimate a TFT map of significant changes of the LPC measure
with respect to the pre-stimulus, as described in Section 3.4. In particular, we
use the significance indexes obtained from p-values (Section 3.4.1), which we
denote here as LPCS

ω,e(t). The TFT map of LPC changes is shown in Figure
4.1 (bottom-right). Note the similarity between this map and the SIH’s for
STPLS and coherence: increases in the LPC correspond to increases in STPLS
and coherence; moreover, the green region in the LPC map (around 9-12 Hz)
corresponds to high values in the SDH’s of STPLS and coherence (see Appendix
??).

In order to estimate the correlation between significant changes in the LPC
and significant changes in a synchrony measure, one can compute the average
class at each electrode, which is given by

cavg
ω,e(t) =

1
Ne − 1

Ne∑

e′=1

cω,e,e′,t. (4.5)

Here we divide by Ne − 1 instead of Ne since cω,e,e,t = 0 for every electrode
e. Table 4.3 shows the correlation between LPCS and the average class (cavg)
corresponding to each of the tested measures. Note that the correlation values
corresponding to STPLS and coherence are significatively higher than for the
other measures.

These results suggest that STPLS and coherence may be seriously influenced
by changes in the dispersion of the local phase measured at each electrode;
in other words, they may be more sensitive to local processes which are not
necessarily related to the synchronization between the two electrodes under
study. For these reasons, we believe that instantaneous measures may be better
suited for synchrony analysis.

As a sidenote, Table 4.3 also shows that STPLS and coherence are slightly
more correlated to instantaneous power changes. This makes sense for coher-
ence, since it uses both the magnitude and phase of the signals; however, the
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correlation indexes are not large enough to suggest a strong dependence between
power and long-range synchrony.

4.2.5 Influence of volume conduction

We have already discussed the importance of the volume conductor in the study
of EEG synchrony. Some authors argue that a synchronization measure that
favors phase differences of zero (such as the MPD) would be highly sensitive to
volume conduction; however, this is not entirely clear. Lachaux et al. [1999]
mention that “another common assumption is that the phase difference between
electrodes should be zero in case of conduction synchrony. This is usually false:
even if two electrodes record the same group of sources, the signals of these elec-
trodes are different linear combinations of the source amplitudes, ... Therefore,
the phase of the original signals recorded by the two electrodes should be dif-
ferent, except if all the sources have the same phase”. In other words, if several
sources influence two different sites via volume conduction, their net influence on
the resulting electrode signals will correspond to different linear combinations of
these source signals (with coefficients given by the corresponding attenuations),
thus producing different phases. From this viewpoint, there is no reason to
think that MPD or CPPD will be more influenced by volume conduction than
the other measures. Furthermore, the MPD and CPPD measures are highly cor-
related to Lachaux’s PLS measure, which measures synchrony with a constant
phase lag (not necessarily zero), suggesting that at least these three measures
are similarly affected by volume conduction.

Lachaux also suggests that one may be able to identify conduction synchrony
by looking at the neighboring sites of the two electrodes. In other words, if
conduction synchrony is observed between two electrodes, then one must also
observe high synchrony between their neighbors. One can test this by defining
a neighborhood Ni for each electrode ei, and then counting, for each electrode
pair < e1, e2 > for which an increase in synchrony is observed, the number of
pairs < er, es >, er ∈ N1, es ∈ N2 whose synchrony also increases. If this
number is relatively high for all t, it may suggest a higher amount of spurious
couplings due to volume conduction (although this is not necessarily true). One
can then compare these values for different synchronization measures to see if
any of them may be more sensitive to conduction effects. With this in mind,
one can define a neighbor-synchrony measure Z+, which is given by:

Z+
ω,e1,e2,t =

∑
r∈N1,s∈N2

δ(cω,er,es,t − 1)
|N1||N2| · δ(cω,e1,e2,t − 1), (4.6)

where c is the class label field obtained from thresholded p-values (as shown in
Section 3.4.1). Here we avoid using the Bayesian classification since the reg-
ularization may introduce spurious correlations among neighboring electrodes.
Note also that we are dividing by the size of the neighborhoods; this is done
in order to normalize the measure, since different electrodes may have differ-
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Figure 4.2: TFT maps of neighbor synchrony (Z+) for the Figures experiment
using the five synchrony measures: MPD, CPPD, PLS, STPLS, and coherence.

ent neighborhood sizes. We have chosen a neighborhood radius such that each
electrode has at least one neighbor.

By inspecting the TFT maps of the average Z+ for each electrode (Figure
4.2), one can see that, if anything, STPLS and coherence show larger Z+ values,
although in a narrower frequency band, than the other measures. In order to
obtain a more conclusive result, we averaged Z+ across all the electrode pairs
which show an increase of synchrony, and across all time and frequency points.
The averaged Z+ is thus given by

Z+ =

∑
ω,e1,e2,t Z+

ω,e1,e2,t∑
ω,e1,e2,t δ(cω,e1,e2,t − 1)

. (4.7)

One can think of Z+ as the conditional probability of some neighbor of e1

increasing its synchrony with some neighbor of e2, given that the synchrony
between e1 and e2 increases. Table 4.4 presents the resulting Z+ for each syn-
chrony measure. Effectively (and surprisingly), STPLS and Coherence show a
higher average neighbor synchrony, although the difference does not seem sig-
nificant. In any case, it is clear that the in-phase synchrony measures (MPD
and CPPD) do not yield Z+ values which are significantly greater than the
other measures, and thus there is no evidence supporting the claim that these
measures may be more sensitive to volume conduction effects.
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MPD CPPD PLS STPLS Coherence

Z+ 0.1139 0.0639 0.0989 0.1606 0.1607

Table 4.4: Average neighbor synchrony Z+ for each synchrony measure applied
to the Figures experiment.

4.2.6 Conclusions

The results shown in the previous sections suggest that

1. Phase synchrony effectively happens, in most cases, with near-zero phase
difference between pairs of leads.

2. Phase synchrony, when happens, is relatively consistent across trials.

3. Instantaneous phase-lock measures are less sensitive to changes in the
dispersion of the local phase at each electrode, and thus may be better
suited for synchrony analysis than measures which are computed across a
time window (disregarding filtering effects).

4. All measures should respond to induced activity; however, measures com-
puted across a time window may be less sensitive to latency jitter.

5. All measures seem to be equally sensitive to volume conductor effects.
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Chapter 5

Apparent phase and
amplitude

In the previous chapters we have described our methodology for the analysis of
synchronization patterns, and shown the advantages of the proposed measures
(MPD and CPPD) over some of the measures in the literature. We have used
these techniques to study a few real EEG datasets, and now we proceed to
describe our findings.

In this chapter, we propose a simple mathematical model of the narrow-
band signal captured by an electrode. With this model, one can explain and
simulate most of the synchronization patterns that result from the analysis of
the experiments. The following chapter will deal with the neurophysiological
interpretation of such patterns.

5.1 Motivation

From the analysis of the Figures, Words, Go/No-Go, and Sternberg experi-
ments, one can observe certain phenomena (some of which have been previously
reported) that may appear counter-intuitive; for example:

1. Synchronous episodes occur with near-zero phase lag, regardless of the
distance between leads. This has also been observed in [Friston et al.,
1997] and [Rodriguez et al., 1999], and is in accordance with David and
Friston’s neural mass model.

2. It is possible that two or more electrodes increase their synchrony with
another electrode, which acts as a nodal point, and at the same time
observe a decrease of synchronization between the non-nodal sites. One
example of this phenomenon is the synchrony pattern observed in the
alpha band (8-12 Hz) in Figures 3.6 and 3.7: the occipital leads increase
their synchrony with most of the other electrodes, while fronto-parietal
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leads show a decrease of synchrony among them. This phenomenon can
also been observed in other studies, such as [Rodriguez et al., 1999], [Varela
et al., 2001], and [David et al., 2003b].

3. When an electrode e increases its synchrony with many other sites, there is
a high probability of observing a significant power change at e in the same
frequency band. If the non-nodal sites show a decrease of synchronization,
the power at e will decrease, and viceversa.

These phenomena may be explained if one supposes that the signal recorded
by a scalp electrode results in fact from the sum of macroscopic oscillations
produced by functionally different neural populations. This assumption is sup-
ported by the following considerations: a scalp electrode provides estimates of
synaptic action averaged over tissue masses containing between 107 and 109 neu-
rons [Nunez, 1995]. There is evidence (obtained, for example, using retrogradely
transported flourescent dyes [Morecraft et al, 1993], and single-cell recordings
[Quintana and Fuster, 1999]) of extensively intermingled populations of neurons
connected with different areas (e.g., frontal eye fields and posterior parietal cor-
tex). Moreover, when performing a computational task, neurons may quickly
associate into a functional group while disassociating from concurrently acti-
vated groups [Haalman and Vaadia, 1998].

5.2 Population model

The facts exposed above suggest that one may be able to model certain aspects
of the EEG dynamics by expressing each electrode signal as the sum of oscil-
lating functions (e.g., sinusoidals) corresponding to the average activity of each
contributing population. It is also plausible that, in order to develop a macro-
scopic oscillation, the neurons of each sub-population must be synchronized.
Therefore, a reasonable model for a complex narrow-band EEG signal is:

V (t) =
∑

k

αk cos(ωkt + φk), (5.1)

where the positive coefficients αk depend on the amplitude and relative size
of subpopulation k, and φk is the corresponding phase. Note that this model
allows neurons to de-couple from their current sub-population and synchronize
with a different sub-population, only by adjusting the corresponding αk’s.

The apparent amplitude A∗ω and phase φ∗ω (at frequency ω) of an EEG signal
are those which are obtained by performing a time-frequency decomposition
of the signal. For the population model (Equation 5.1), one can obtain the
apparent amplitude and phase by passing V through a band-pass quadrature
filter tuned at frequency ω. If the filter is sufficiently narrow, the components
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Figure 5.1: Apparent amplitude and phase versus underlying phase difference
φ1−φ2 and proportion α of oscillators with phase φ1 for a 2-population model.

of V with ωk 6= ω will be attenuated; therefore, the complex filtered signal S
can be approximated by:

Sω(t) =
∑

k:ωk=ω

αkei(ωt+φk), (5.2)

Since Sω(t) = A∗ω(t) exp[iΦ∗ω(t)], where Φ∗ω(t) = ωt+φ∗ω(t) is the argument of
the signal, it is possible to cancel the frequency component eiωt in the previous
expressions to obtain:

A∗ω(t) exp [iφ∗ω(t)] =
∑

k:ωk=ω

αk exp [iφk] . (5.3)

In other words, the apparent amplitude and phase are those of the resultant
of the sum of vectors αk exp[iφk], k : ωk = ω in the complex plane. Particularly,
for two sub-populations (k = 1, 2, α = α1 = 1− α2), we have that

(A∗ω)2 = a2 + b2, (5.4)
tanφ∗ω = b/a, (5.5)

with

a = α cosφ1 + (1− α) cos φ2, (5.6)
b = α sin φ1 + (1− α) sin φ2. (5.7)

Figure 5.1 shows (for two sub-populations) how the apparent amplitude and
phase vary with respect to the phase difference (φ1 − φ2) and proportion α.
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Note that according to this model, a decrease of amplitude may be caused by
a local resynchronization process where a group of neurons change their phase
resulting in a more uniform proportion of sub-populations. Also, according to
this, variations in the apparent phase may be related either to variations in the
phase of some sub-populations (lack of local synchronization), or to changes in
the size coefficients (which may be considered as local resynchronization pro-
cesses). With this in mind, one could consider the local phase constancy (as
defined by Equation 4.4) as a measure of local synchrony.

5.3 Zero-phase synchrony

With the population model one can explain why the apparent phase difference
between two synchronized distant regions can be zero, in spite of the fact that
there may be a significant transmission delay: with two sub-populations one
can model a unidirectional coupling between two distant cortical areas, in the
sense that a sub-population in one area drives a sub-population in the other area
with a certain phase lag δ. For a bidirectional coupling we just add a reciprocal
connection, with the same phase lag. Figure 5.2 shows a schematic of two
populations in bidirectional coupling. If all sub-populations have approximately
the same size (i.e. α = 0.5), then the apparent amplitude and phase for each
electrode would be given by

A∗1 exp[iφ∗1] = 2 cos
(

φ1 − φ2

2

)
exp

[
i
φ1 + φ2

2

]
, (5.8)

A∗2 exp[iφ∗2] = 2 cos
(

φ1 − φ2 − 2δ

2

)
exp

[
i
φ1 + φ2

2

]
. (5.9)

So that φ∗1 − φ∗2 ≈ 0, except in the case where

φ1 − φ2 + 3π

2
< δ <

φ1 − φ2 + π

2
, (5.10)

in which case φ∗1 − φ∗2 ≈ π, which is in accordance with David and Friston’s
neural mass model [2003].

5.4 Nodal points

In all the real EEG datasets we have analyzed, one can observe sites that show,
in a specific time-frequency window, a significant increment of synchrony with a
large group of electrodes. These sites act as characteristic nodes of a particular
network, hence we call them nodal points. It is common, although counter-
intuitive, that the group of electrodes synchronized to a nodal point show a
lack of synchrony, often observed as desynchronization, among themselves. One
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Figure 5.2: Bidirectional coupling between two areas with two sub-populations
each. If the sub-populations are all the same size, the apparent phase difference
φ∗1 − φ∗2 will be either 0 or π.

illustrative example of this phenomenon can be seen in the alpha band (8-12
Hz) in Figures 3.6 and 3.7, where occipital leads (electrodes T5, T6, O1, O2,
and Oz) show an increase of synchrony with most of the sites, and at the same
time, frontal and central leads show a synchrony decrease among them.

Let us consider three electrodes: e1 shows an increase in synchrony with
both e2 and e3. One would expect e2 and e3 to be also coupled, but this does
not always happen. In fact, sometimes e2 and e3 show a decrease in synchrony.
The answer, in terms of the population model, is that synchronization occurs
between sub-populations (as shown in the previous section) by resynchronization
processes which affect the sub-population sizes (the αk coefficients), and are
reflected in changes in the apparent phase which the MPD and CPPD measures
can detect. A simple example of this model (for three electrodes) is shown in
Figure 5.3: an increase in synchrony between e1 and e2 (i.e.- an increase of
α1,1 and α2,1) may result in a decrease of synchrony between e2 and e3 since
the sum of sub-population sizes must remain constant for each electrode. Of
course, with a larger number of sub-populations, more complex synchronization
patterns can be simulated.

On the other hand, we have observed that the relative increase in synchrony
with a nodal point is usually correlated with a significant power decrease in the
nodal point itself. To study this in detail, we define a site e as k-nodal at time t
and frequency ω if it shows significant increase in synchronization with at least
k different sites. Figures 5.4a and 5.4b show, respectively, all 15-nodal sites for
the Figures experiment, and the corresponding TFT map of significant power
changes. In this example, one can clearly see that most of the nodal sites suffer
a power decrease.

To confirm this, one can estimate the proportion of nodal sites in which
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Figure 5.3: Population model for three inter-coupled electrodes. The phases φi

represent the apparent phase of the sub-populations involved in each bidirec-
tional coupling.

an amplitude decrease is observed: let Nk be the number of k-nodal points in
the TFT space and A−k the number of k-nodal points that also show a power
decrease, then the conditional probability of significant power decrease given
that a site is k-nodal can be estimated by P−k = A−k /Nk. One may similarly
estimate the probability of amplitude increment P+

k . These probabilities are
shown in Figure 5.5, where it is clear that P−k increases with the number of
couplings k.

This behavior may also be simulated with the population model: suppose the
population covered by the nodal point is divided into various sub-populations,
each one of which is coupled with a different site (see Figure 5.6a). If the sites
to which the nodal point is connected are not in synchrony, the underlying
sub-population phases may assumed to be fairly different. In other words, the
underlying phases {φj} will show high dispersion, which will be reflected as
a low apparent amplitude A∗ωe (Equation 5.3). Figure 5.6b shows a synthetic
example which simulates a nodal point placed at O2. The particular model for
each signal V Se is given by

V Se(t) =
Nk∑

k=1

αe,k cos(ωt + φk) + εe(t), εe(t) ∼ N (0, σε) (5.11)

with Nk = Ne, ω = 10 Hz (for this example), σε = 0.02, and underlying phases
φk ∼ U(−π, π), k = 1, . . . , Nk. In the pre-stimulus segment, neurons under site
e oscillate predominantly with phase φe, thus there is little synchronous activity.
This may be accomplished by assigning αe,e a higher value than αe,k, k 6= e for
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Figure 5.4: (a) TFT map of 15-nodal points (i.e., sites which increase their
synchrony with at least 15 other sites) for the Figures experiment. (b) TFT
map of significant amplitude changes (red = increase, green = decrease).
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Figure 5.5: Conditional probabilities of amplitude increment (red) and decrease
(green) in k-nodal points, for the Figures experiment.

each e = 1, . . . , Ne. Specifically, we have that

αe,k =




|ηe,k|, ηe,k ∼ N (0, σ) if k 6= e,

1−∑
k 6=e αe,k if k = e.

(5.12)

with σ = 0.01 for this particular example.

In the post-stimulus we model site enod as a nodal point by increasing the
proportion of sub-populations with phases φk, k 6= enod (at the expense of a
lower αenod,enod). This will also cause a drop in the nodal site’s amplitude, just
as expected. The αenod,k’s in our example are almost uniformly distributed:

αenod,k =




| 1
Ne

+ η′enod,k|, η′enod,k ∼ N (0, σ) if k 6= enod,

1−∑
k 6=1 αenod,k if k = enod.

(5.13)

Additionally, we have modeled a synchrony decrease among all non-nodal
sites by halving the variance of the αek’s in Equation (5.12) (only for non-nodal
sites in the post-stimulus segment). This can be seen as a resynchronization
process where half the neurons of each sub-population k under site e change
their phase from φk to φe, which results in a decrease in synchrony with site k.

Amplitude decreases in nodal points have also been observed in three other
experiments (Words and Sternberg - see Appendix ??). Two more experiments
(Letters) show a different behavior: there is a high probability of observing a
power increases in nodal points. In this case, however, the sites in synchrony
with the nodal point show significant coupling between them, suggesting a low
dispersion of the subjacent phases, which may account for the increase in am-
plitude.
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Figure 5.6: (a) Population model applied to a nodal point: each sub-population
under the nodal site is coupled with a different site (shown in blue). The blue
sites show no interaction between themselves thus the phases {φj} may be dif-
ferent enough to originate a drop in the nodal point’s apparent amplitude. (b)
Synchrony pattern obtained in the alpha band (post-stimulus segment) for the
synthetic example of a nodal point (generated with the population model - see
text for details). (c) TFT map of significant power changes from -100 to 300 ms
(0 ms being the time of stimulus onset) for the synthetic nodal-point example:
a clear power drop in the nodal site can be observed.
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Chapter 6

Results and conclusions

6.1 Software application

The methodology described in the previous chapters has been implemented in
a software program, which performs the time-frequency decomposition of the
raw EEG signals, estimates any of the measures previously described, and then
performs a significance test using either Bayesian classification or thresholded
p-values. The results can be presented in various types of display: multitopo-
scopes, TFT maps, and partitioned synchrony maps.

The following measures are currently implemented in the program:

• Changes in log-power with respect to the pre-stimulus (typical induced-
power analysis)

• MPD

• CPPD (with threshold ε given in radians or ms)

• PLS

• STPLS (with window size w given in ms)

• Coherence (with window size w given in ms)

• LPC (with window size w given in ms)

• Local phase constancy across trials (LPCT)

Additionally, the program can perform the same type of studies on evoked
potentials (e.g., potentials averaged across trials), with the exception of those
measures which require multiple trials to be estimated (CPPD and PLS).

For any of the synchrony measures, the program can display the following
maps:
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• TFT Histograms of significant synchrony increases (or decreases) for each
electrode

• TF Histograms of significant synchrony increases (or decreases) across all
the surface

• Multitoposcopic display of synchrony patterns for a given time and fre-
quency

• Partitioned synchrony maps with a representative multitoposcope for each
TF region

• TF maps of class labels for a given electrode pair (an example can be seen
in Figure 6.6)

A full manual of the program can be found in Appendix ??.

6.2 Analysis of real EEG data

We have used the software application in collaboration with Dr. Thaĺıa Har-
mony and Ph.D. student Berta González to study the dynamic synchrony changes
in the Figures and Letters experiments. In this section we summarize our find-
ings. All synchrony histograms and TFT maps for each experiment can be found
in Appendix ??.

6.2.1 Results from the Figures experiment

Recall that we are measuring the changes in synchrony during a particular state
in relation to a previous condition that is considered neutral. These changes can
be observed, concurrently, at all frequencies. For example, there is an increase
in synchrony in the delta band (1-3 Hz) in the anterior regions between 450
and 600 ms; after this time, the synchrony increased mainly in the posterior
regions (Figure ??). In the first 150 ms in the delta and theta bands there
was a decrease in synchrony in occipital regions (Figure ??); this may be due
to the activation of the visual areas produced by the stimuli. In the theta
range (4-7 Hz), the most generalized change in synchronization in the EEG
after 300 ms is the phase-lock increase between posterior and anterior regions,
which can be observed in the partitioned map (Figure ??). This pattern may be
related to activation of Working Memory (WM), which is the process of actively
maintaining a representation of information for a brief period of time so that it is
available for use. Attention, decoding, perception and maintenance in memory
are processes that involve the activation of WM. According to [Ungerleider et
al., 1998], visual working memory involves the concerted activity of a distributed
neural system, including posterior areas in visual cortex and anterior areas in
prefrontal cortex.
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The increase in theta (4-7 Hz) power in frontal regions (Figure ??) has
been also related to activation of WM [Gevins et al., 1997; Rhom et al., 2001].
Anterior regions are also involved in encoding [Klimesch, 2004] and maintaining
the information in memory [Barde and Thompson-Schill, 2002]. Sarnthein et
al. [1998] report an increase in coherence in the theta range between prefrontal
and posterior electrodes during retention of a string of characters.

In the alpha range (8-12 Hz), simultaneously with the increase in synchrony
in the occipital regions, there was a decrease in synchrony between all regions
except the occipital leads and the frontal regions on which synchrony increases.
This increase may be indicating the projection loops between attentional control
system in prefrontal cortex and activated meaning representations in semantic
memory in posterior regions. The decrease in synchrony in the alpha band
between 100 and 1500 ms coincides with the phenomena described in the 1930s
by Adrian and Mathews of amplitude decrease (which can also be observed in
Figure ??) or “desynchronization” and it has been related to attention [Gevins
et al., 1997; Rhom et al., 2001; Klimesch, 1999].

Another change that was observed is the increase of synchrony in occipital
regions in the beta band. In humans, in intracranial recordings that limited
regions of extrastriate visual areas, separated by several centimeters, EEG ac-
tivity in the beta range (15-25 Hz) became synchronized in an oscillatory mode
during the rehearsal of an object in visual short-term memory. According to
Tallon-Baudry et al. [2001] these findings confirm experimentally the hypoth-
esis of a functional role of synchronized oscillatory activity in the coordination
of distributed neural activity in humans, and support Hebb’s [1949] popular
concept of short-term memory maintenance by reentrant activity within the
activated network.

In the gamma band (30-40 Hz), an increase of synchrony in the interval
200-300 ms was observed. This has been related to visual search and perception
[Tallon-Baudry et al., 1997]. The increase in synchronization during the interval
of 600 to 800 ms around 34 Hz might be related to preparation of the motor
response.

6.2.2 Results from the Letters experiment

Synchronization during the Go and NoGo conditions from the Letters experi-
ment was studied using signals from projections to cortical sources (see Section
3.7) instead of raw potentials.

In the Go/NoGo paradigm, overall brain activity seems to involve several
sub-processes, namely discrimination between the stimuli, activation of working
memory, a decision whether or not to move, and initiation or inhibition of the
motor actions [Shibata et al., 1999]. Anticipatory processes are also involved
[Basar-Eroglu et al., 1992].

In the analysis of power changes (Figures ?? for the Go condition, and ??
for the NoGo condition) we observed an increase of delta activity from 100 to
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450 ms in the Go condition and from 0-500 ms in the NoGo condition. This
has been related to decision making and matching processes [Basar-Eroglu and
Demiralp, 2001] and to inhibition of non-related task processes during attention
to internal processes [Harmony et al., 1986]. In the Letters experiment, the
delta power increase could be related to any of the processes mentioned.

Increases in theta (4-7 Hz) amplitude and synchronization have been mainly
related to activation of Working Memory (WM) [Gevins et al., 1997, 1998;
Rhom et al., 2001; Harmony et al., 2001, 2004]. The WM model of Baddeley
[1999] distinguishes central executive functions from storage functions related
to two slave systems, the phonological loop, maintaining verbal information,
and a visuospatial sketch pad, responsible for the transient storage of visuospa-
tial information. Frontal lobes have been considered the neural substrate of the
central executive processes, but growing evidence has shown that executive func-
tions do not only rely on prefrontal cortical activation but also on a distributed
frontoparietal network [Sauseng et al., 2005; Osaka et al., 2004]. Visual WM
involves the concerted activity of a distributed neural system which included
posterior areas in the visual cortex and anterior areas in the prefrontal cortex
[Ungerleider et al., 1998].

Theta activity in anterior regions is also involved in encoding [Klimesch,
1999] and in maintaining the information in memory [Barde and Thompson-
Schill, 2002]. Sarnthein et al. [1998] found an increase in theta coherence
between prefrontal and posterior electrodes during retention of a string of char-
acters. These authors also reported that gamma (19-32 Hz) synchrony increased
during both perception and retention intervals, suggesting that locally driven
synchrony might take place in the gamma range, whereas inter-areal interac-
tions, as in WM, appear at lower frequencies.

Shack et al. [2005] suggested that theta activity reflects central executive
functions whereas upper alpha may be important for the reactivation of long-
term memory codes in short-term memory.

Mazaheri and Picton [2005] reported that induced theta activity might be
related to memory or attentional processes. An increase in theta power at
around 300 ms after stimuli occurred with episodic memory [Klimesch, 1999].
Recognition memory, which is likely to be involved in target discrimination,
has also been found to be related to synchronization of theta rhythm [Burgess
and Gruzelier, 1997]. Frontal theta activity has been observed during focused
attention and in association with response processing [Gevins et al., 1997]. Bas-
tiaansen and Hagoort [2003] report that experimental evidence largely supports
the hypothesis that theta activity plays a functional role in cell assembly forma-
tion, a process that may constitute the neural basis of memory formation and
retrieval.

Simultaneously with the increase in power in the theta range (0-400 ms),
there is also an increase of power in the alpha band in the first 200 ms, and
later, a decrease in alpha power (200-1000 ms) in the Go condition. In the NoGo
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condition there was a generalized increase in theta power from 0 to 500 ms, and
at 8 and 9 Hz, a power increase from 0 to 450 ms. Power decrease in the Go
condition was observed after 250 ms in frequencies from 8 to 29 Hz and in the
NoGo condition from 600 to 900 ms in the theta range and from 50 to 300 ms
at 18-20 Hz.

The decrease in power in the alpha band between 100 and 1000 ms coincides
with the “desynchronization” phenomenon described in the 1930s by Adrian
and Mathews, which has been related to attention [Gevins et al., 1997; Rhom
et al, 2001; Klimesch, 1999]. Alpha suppression in response to effortful mental
tasks has been interpreted as the marker of activation of functionally involved
brain areas. However, this response is inconsistent and depends on the specific
cognitive strategies employed by the subjects [Kolev et al., 2001]. In our ex-
periment, in the Go condition, alpha power increased in the first 200 ms, and
decreased afterwards. However in the NoGo condition, alpha power increased
for a prolonged period up to 500 ms. Decreases in power in low alpha band in
the NoGo condition were observed only from 600 to 850 ms. According to Kolev
et al. [2001], enhanced early alpha oscillation to task stimuli within 0-250 ms
may be related to task stimulus evaluation.

Alpha synchronization increased in both conditions (Figures ?? for the Go
condition, and ?? for the NoGo condition), mainly between posterior regions and
the remaining cortex. The right lateral occipital region is selectively activated
during visuospatial attention [Foxe et al., 2003], which may explain our results
showing this particular increase in synchronization between occipital (more in
the right hemisphere) regions and the rest of the cortex.

In this experiment, one can also observe an increase of synchrony in occipital
regions in the beta band. Transient long-range phase synchronization in the
beta band has been related to the fronto-parietal-temporal attentional network
during an attentional task [Croxson et al., 2005]. Beta synchronization across
the hemispheres was reported during the perception of objects [Von Stein and
Sarnthein, 1999] and during mental calculation [Mizuhara et al., 2005]. This
is also supported by the report by Tallon-Baudry et al. [2001] about the role
of synchronized activity in the coordination of distributed neural activity, as
described in the previous section.

Oscillatory synchronization has been suggested to characterize a neuronal
assembly coding for an object. Neurons distributed across different brain areas
would synchronize their firing in the gamma band [Singer, 1993], supporting the
idea of a role of gamma band synchrony in feature binding [Tallon Baudry et
al., 1997]. In the gamma band an increase of synchrony in the first 200 ms was
observed only in the Go condition. According to Karacas et al. [2001] the early
high gamma response (¿75 Hz) that occurred as a phase-locked activity in the
early time window of 0-150 ms is obtained regardless of stimulus type and task
demands; thus, it is not a perceptual phenomenon, but instead it represents
sensory processes. However, this was not confirmed with our experiments, since
no gamma change was observed in the NoGo condition, although we did not
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explore such high frequencies. This increase in synchrony in the gamma band
has been related to visual search and perception [Tallon Baudry et al., 1997].
The increase in synchronization during the interval of 700 to 1300 ms in the
gamma band might be related to preparation of the motor response, since it
was observed only in the Go condition, which confirms other studies [Salenius
et al., 1996].

Multitoposcopes corresponding to a partition by bands of frequency and time
intervals gives a clear picture of the changes produced in synchrony (Figures ??
and ??, for Go and NoGo, respectively). In the Go condition, delta synchrony
increases during the whole post-stimulus interval, whereas in the NoGo condition
the synchrony increases only from 0-900 ms. In the theta band very similar
changes were observed for both conditions, with a large increase in synchrony
in the interval 300-600 ms. In the low beta band increases in synchrony were
observed in all intervals in the NoGo condition. In the high beta and in the high
gamma bands, very similar changes were observed in both conditions. However
in the low gamma band (30-40 Hz), opposite effects were observed in the two
conditions: increases in synchrony in all intervals in the Go condition but only
decreases in synchrony in the NoGo condition. These great differences may be
due to preparation and motor activation during the Go condition [Salenius et
al., 1996].

6.3 Conclusions

During the performance of different cognitive and sensorial brain tasks, several
neuronal assemblies, which are not necessarily contiguous, may become active
simultaneously and generate synchronized macroscopic oscillations. This dy-
namic reorganization produces complex patterns of synchronization and desyn-
chronization between different cortical areas, with respect to a previous state
considered as neutral. Based on this, significative increases in synchrony mea-
surements between leads indicate that the cortical areas corresponding to those
leads may be integrating a network related to a particular psychophysiological
process. Thus, EEG synchrony measures between regions may yield important
information about the dynamics of cell assemblies.

In this work, we have favored instantaneous in-phase (i.e.- zero phase differ-
ence) synchrony measures, such as MPD and CPPD, for various reasons: first,
there is extensive evidence showing that, in most cases, the phase difference be-
tween two areas changes towards zero when the areas are coupled; this evidence
includes studies with real EEG data by Friston et al. [1997] and Rodriguez et
al. [1999], theoretical results from mathematical models (David and Friston’s
neural mass model, and our population model) where bidirectional couplings
result in synchrony with a phase-lag of zero or π, reports by David and Friston
[2003b] and Varela et al. [2001] arguing that the proportion of bidirectional
connections in the brain is very high, and the high correlation between MPD,
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CPPD, and PLS (which is not an in-phase measure). Second, instantaneous
measures do not seem to be as affected by local phase dispersion as those mea-
sures which are estimated within a time window (e.g., coherence and STPLS).
And third, our tests have shown that MPD and CPPD are not affected by
volume conduction more than any of the other measures discussed here. On
the other hand, coherence and STPLS may be more robust to latency jitter,
and thus provide better detection of induced responses, but unfortunately, in
this case, local phase dispersion may seriously mask the long-range synchronous
activity.

Even if MPD and CPPD have clear advantages, other steps involved in the
detection of phase synchronization must be performed with care. The first
problem which concerns us is the possible spurious couplings introduced by
volume conduction. Although various techniques have been proposed to reduce
the volume conduction effects, none of them has proven to be sufficiently reliable.
Estimation of the Surface Laplacian (SL), favored by Nunez [1995, 1997, 1999],
requires a high electrode density, and thus cannot be applied to most of our
datasets. On the other hand, solutions based on the inverse problem depend,
in great measure, on constraints which are relatively arbitrary. In any case,
one should use these solutions to complement the results obtained with raw
potentials, and not as the only representation of the EEG dynamics.

Another problem is related to the time-frequency decomposition techniques
used to extract the phase of the signals. As we have shown, the more popular
Gabor filters and wavelets may not be adequate for low frequency analysis (delta
and theta bands). In general, one must design the filters such that they have
no significant response to negative frequencies. Sinusoidal quadrature filters
appear to be a reliable solution to this problem.

To determine which synchrony values are significantly different from the
pre-stimulus state, we subtract the baseline average, and then use a Bayesian
classification method with a Markov Random Field model instead of the typical
thresholded p-values. The Bayesian approach permits one to impose regularity
constraints that control the granularity of the results. This is particularly im-
portant for instantaneous measures, which produce results that are relatively
noisier than those measures estimated across a time window (e.g., coherence),
and also has the advantage that the resulting class field is relatively robust to a
wide range of values for the constraint parameter, whereas the p-value threshold,
in the other case, has to be adequately chosen for each particular experiment.

Once the class label field for a particular synchrony measure has been com-
puted, it is possible to present the results in various ways. A multitoposcopic
display is useful to show the synchrony pattern corresponding to a specific time
and frequency point or window. One can then plot a partitioned synchrony map
by drawing a series of multitoposcopes that would cover the time segments and
frequency bands of interest. On the other hand, TFT synchrony histograms
can be used to display the number of connections (with respect to the baseline)
in which each electrode participates: regions with high inter-connectivity may
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represent integrated networks which are related to specific cognitive or sensorial
processes. All these visualization tools allow the neuroscientist to explore the
changes of electroencephalographic states during the course of a cognitive ex-
periment with great detail. The analysis of the Figures and Letters experiments
provide an illustrative example of the usefulness of these techniques.

Finally, a population model for the apparent phase and amplitude observed
at an electrode can successfully simulate the synchrony patterns observed in
real EEG data, including some interesting phenomena such as the existence and
behavior of nodal points.

6.4 Future work

Here we discuss a few recent ideas that we intend to develop in the future.
Additionally, and in conjunction with the UNAM Neurobiology Institute (INB-
UNAM), we expect to analyze various EEG experiments, which may require
specific changes in the methodology.

6.4.1 Evoked potentials and synchronization

EEG activity is typically characterized as evoked (i.e., phase-locked to the stim-
ulus), or induced (time-locked but not necessarily phase-locked). In practice,
evoked activity is revealed by averaging the EEG signals across trials, and per-
forming a spectral analysis on the averaged signals: any activity which is not
phase-locked to the stimulus will show a certain amount of phase dispersion
across trials, which will result in destructive interference when averaging, leav-
ing only the evoked responses untouched. On the other hand, induced activity
is obtained by performing the spectral power analysis for each trial, and then
averaging the power across trials.

One of the mechanisms which are thought to generate evoked responses is
the partial phase-resetting [Makeig et al., 2002; Penny et al., 2002], in which a
particular combination of the network’s current state and the network’s input
cause the system’s phase to be reset to a certain value. Figure 6.1 shows the
average potentials obtained from the GO condition of the Letters experiment.
In this example, one can see that some of the peaks (e.g., around 150 ms and
300 ms) are observed in several sites, suggesting a relation between evoked ac-
tivity and long-range in-phase and anti-phase synchronization. However, even if
the phase-resetting mechanism may affect various networks located in different
cortical areas, one could argue that due to the variations in the transmission
delay of the reset signal, the affected areas will not necessarily be in perfect syn-
chrony after their phase has been reset. In other words, if an evoked potential
is observed in various areas, one may not necessarily observe in-phase synchro-
nization between those areas. The opposite is also plausible: two cortical areas
may increase their synchrony (with respect to the baseline), but if there is no
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Figure 6.1: Evoked potentials for the GO condition of the Letters experiment:
for each electrode, the average signal (estimated across trials) is displayed.

event-related phase-resetting mechanism affecting the subjacent phase of those
areas in each trial, an evoked potential may not be generated. In any case, a
measure of phase constancy across trials may yield some additional information
about this type of mechanism.

Other authors (e.g., [Freeman and Schneider, 1982]) argue that evoked po-
tentials originate, in fact, from an event-related activation of neural assemblies
distinct from background dynamics [Fell et al., 2004]; in other words, the stim-
ulus causes certain neural assemblies to generate a particular waveform, which
may be reinforced by averaging across trials.

It is also possible that a mixture of both mechanisms is present in the de-
velopment of evoked activity [Penny et al., 2002; Fell et al., 2004]. It would
be interesting, then, to study the evoked potentials, along with other measures
(e.g., induced power, synchronization, and phase constancy across trials), and
try to distinguish between all possible cases. As an example of how this problem
can be approached, we present in Figure 6.2 the following maps for the Letters
experiment (GO condition):

(a) TFT map of changes in evoked power (EP); that is, the power of the
average signals

(b) TFT map of changes in local phase constancy across trials (LPCT)

(c) SIH of evoked MPD (eMPD) synchrony (i.e., MPD between pairs of aver-
age signals)
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Figure 6.2: (a) TFT map of significant EP changes (red = increase, green =
decrease). (b) TFT map of significant LPCT changes (red = increase, green =
decrease). (c) TFT histogram of evoked MPD increases. (d) TFT histogram
of induced MPD increases. (e) TFT map of total power changes with respect
to the pre-stimulus. (f) TFT map of total power minus evoked power.

(d) SIH of induced MPD (iMPD) synchrony

(e) TFT map of induced power changes with respect to the pre-stimulus

(f) TFT map of induced power minus evoked power (significance values)

Note that the first two maps (evoked power and phase constancy across
trials) are very similar. This supports to some extent the theory of phase-
resetting. On the other hand, there is also some correlation between evoked
and induced power; in fact, the difference between induced and evoked power
appears to be significant in only a few places, particularly after 350 ms (Figure
6.2f). This suggest that a certain evoked waveform develops right after the
stimulus and is consistent in each trial. As time goes by, it is less likely that

84



event-related processes (particularly, the cognitive ones) will be phase-locked
to the stimulus, and thus the differences between induced and evoked activity
become more significant.

In Figure 6.1, one can see that, at around 150 ms, there is evoked activity in
the alpha/low-beta range at many electrodes, which appears to be in synchrony
(both in-phase and anti-phase); however, the iMPD map (Figure 6.2d) does
not show such synchrony. If one closely inspects the peaks of the raw evoked
potentials, one can see small differences in latency between electrodes, support-
ing the idea that the phase-resetting mechanisms do not affect all areas at the
exact same time. It is also interesting that there is very little evoked synchrony
(Figure 6.2c), compared to induced synchrony (possibly also due to the peak
latency variations between leads).

Between 300 and 600 ms one can also see (in the iMPD map) a certain
amount of synchronous activity in the alpha range (∼ 12 Hz), which does not
coincide with an increase in EP.

This suggests three different cases of correlation between EP changes and
induced synchrony changes between two areas, that may be of interest:

1. The two areas show an increase in evoked power and their synchronization
also increases.

2. The two areas show an increase in evoked power but not in synchroniza-
tion.

3. The two areas show an increase in synchronization but not in evoked
power.

Each of these cases may represent a different type of process. In order to
obtain a detailed view of the coincidences between EP increases and induced
synchrony increases, one can plot the coincidence map C given by

Cω,e1,e2,t =





1 if cep
ω,e1,t = cep

ω,e2,t = 1 and cµ
ω,e1,e2,t = 1

2 if cep
ω,e1,t = cep

ω,e2,t = 1 and cµ
ω,e1,e2,t 6= 1

3 if (cep
ω,e1,t 6= 1 or cep

ω,e2,t 6= 1) and cµ
ω,e1,e2,t = 1

0 otherwise,

(6.1)

where cep is the class field corresponding to EP changes, and cµ is the class field
corresponding to synchrony measure µ. Figure 6.3 shows the coincidence map
for the GO condition using MPD as synchrony measure.

Each of the three cases described above can be explained with the pop-
ulation model and a phase-resetting mechanism: consider the model for two
bidirectionally coupled areas, and suppose that the subjacent phase of each
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Figure 6.3: Partitioned map of coincidences between EP increases and iMPD
increases: red means an increase in EP (at both electrodes) and an increase in
iMPD (C = 1), green means increase in EP but not in iMPD (C = 2), and blue
means increase in iMPD but not in EP (C = 3).
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driving sub-population can be reset with an external signal r (see Figure 6.4a).
Note that r is delayed at each area i by λi, thus the subjacent phases are not
necessarily reset at the exact same time. On the other hand, the coupling pa-
rameter α is related with the sub-population sizes; for example, perfect in-phase
synchrony is obtained with α = 0.5 (i.e.- sub-populations of the same size).

If an event-related reset signal is sent to either (or both) areas, an evoked
potential (i.e.- an increase in EP) will be observed, and depending on the differ-
ence λ1 − λ2, an increase in iMPD may also been observed (case C = 1) even if
the true synchronization between the two areas has not changed. In this case,
it is not possible to distinguish if an increase in iMPD (i.e., near zero apparent
phase difference) is due to a true increase in synchronization, or due to a phase-
resetting mechanism which acts upon both areas almost at the same time. On
the other hand, if λ1−λ2 is large enough, resetting the subjacent phases in both
driving sub-populations will not result in spurious high synchrony (case C = 2).

If there is phase-resetting but no true coupling (Figure 6.4b), one will observe
an increase in EP, and may or may not observe a (spurious) increase in iMPD
(cases C = 1 and C = 2, respectively).

The last case (C = 3) is explained, according to the model in Figure 6.4c,
where there is coupling but no phase-resetting. The change in iMPD may be
caused simply by a change in the subjacent sub-population sizes (i.e.- a resyn-
chronization process where more neurons become part of the sub-populations
involved in the bidirectional coupling), such that α changes towards 0.5. The
idea of neurons resynchronizing to a different sub-population is supported by
studies by Haalman and Vaadia [1998], which show that when performing a
computational task, neurons may quickly associate into a functional group while
disassociating from concurrently activated groups.

David et al. [2006] have also studied the mechanisms which generate evoked
and induced responses (in terms of power), from the viewpoint of their neural
mass model [David et al., 2003]. According to them, there are two types of
mechanisms: dynamic mechanisms, which consist of modulations of the neuronal
input, and structural mechanisms, which correspond to changes in the system’s
causal structure (e.g., the model parameters). David et al. study how a mixture
of these mechanisms is reflected as evoked and induced responses.

In our population model, the resetting function r is the system’s input,
thus one can consider the phase-resetting mechanism as a dynamic one. Fur-
thermore, the resynchronization of neurons from one sub-population to another
may be considered a structural mechanism. Our intention is to study in more
depth these mechanisms, and their expression in terms of evoked power, induced
power, and long-range phase synchronization.

6.4.2 Anti-phase synchrony

Earlier, we discussed the concept of anti-phase synchronization; that is, coupling
with a phase difference of π radians. Both, David and Friston’s neural mass
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Figure 6.4: Population model for two bidirectionally coupled areas (with cou-
pling parameter α), with a phase-resetting signal r affecting the driving sub-
populations.
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Figure 6.5: (a) SDH of CPPD for ε = π/5 rad. (b) SIH of AP-CPPD for
ε = π/5 rad. (c) SDH of CPPD for ε = π/20 rad. (d) SIH of AP-CPPD for
ε = π/20 rad.

model, and our population model, yield a phase difference of zero or π for two
areas which are bidirectionally coupled. Moreover, as can be seen in Figure
6.1 (around 150 ms), when some electrodes show a positive evoked potential,
others display a negative peak at approximately the same latency, suggesting
the presence of anti-phase synchrony.

Therefore, it would be interesting to develop a method to detect true anti-
phase couplings, and study its relation with in-phase synchrony and evoked
potentials. As a first approach, an anti-phase CPPD (AP-CPPD) measure has
already been proposed in Section 3.3.3 (Equation 3.7). The problem with this
measure is that it is highly correlated (negatively) with the in-phase CPPD.
This means that it is not easy to distinguish, with these measures, between
increases in anti-phase synchrony and decreases in in-phase synchrony. One
thing that helps is using small values for the threshold ε, at the expense of a
more conservative criteria for synchrony (e.g., fewer significative changes with
respect to the baseline).

An example of these measures is shown in Figure 6.5. Here we present the
synchrony decrease histograms of the (in-phase) CPPD measure, and synchrony
increase histograms of the anti-phase CPPD, for ε values of π/5 and π/20.
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Figure 6.6: Time-Frequency maps of class label fields (red = increase, green
= decrease) for the MPD measure, corresponding to electrode pairs Fp1-Fp2,
Fp1-O2, and T5-T6 of the Figures experiment.

For larger ε values, the CPPD SDH and AP-CPPD SIH are relatively similar,
whereas smaller thresholds seem to be more adequate to discern between the
anti-phase synchronization and desynchronization.

6.4.3 Synchrony at multiple frequencies

Another interesting phenomenon is the ability of two electrodes to display in-
phase synchronization at various frequencies, at the same time. To see this, one
can plot the TF map of class labels for a particular pair of electrodes. Figure 6.6
shows a few examples of this behavior for pairs Fp1-Fp2, Fp1-O2, and T5-T6
of the Figures experiment. The case of T5-T6 is particularly interesting since
there is an increase in synchronization in the delta and theta bands, a decrease
in the alpha and low beta bands, and then another increase in the beta and
gamma bands. This may be explained by the idea (already discussed in Section
5.1) that during certain tasks, neurons may become part of a functional group,
while disassociating from other groups. If these functional groups generate
macroscopic oscillations at different frequencies, then one may be able to see
synchronization patterns which are multiplexed across a wide frequency range,
such as those in Figure 6.6. It is possible, then, that in order to obtain a full
picture of the synchronization pattern at a given time, one should integrate the
information for all frequency bands in a single display.
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