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Abstract

Here we propose a methodology for the exploratory analysis of EEG
synchrony data based on the segmentation of the time-frequency plane in
regions with homogeneous synchrony patterns. This segmentation is per-
formed by means of a region-growing algorithm with automatic seed selec-
tion, and a Bayesian regularization technique. To illustrate our method,
we present the resulting maps from a figure categorization experiment.

1 Introduction

The study of oscillatory synchronization between different brain regions is cur-
rently one of the most active topics in neuroscience research. According to
various authors [2] [6], several brain areas, which may be relatively distant, in-
teract together during the execution of a complex task. These interactions are
reflected in the EEG as some form of synchronization between electrode sig-
nals, over different frequency bands. Various measures have been proposed to
quantify the degree of synchronization between pairs of electrode signals [4] [2]
[1], all of which result in a high-dimensional field µt,f,e1,e2

which corresponds to
the degree of synchrony between electrodes e1 and e2, at time t and frequency
f . This leads to a visualization problem which some authors avoid by focus-
ing only on specific frequency bands or electrode pairs, or by averaging across
a large time window. Here we propose a different solution, which consists on
finding regions in time-frequency (TF) space where the interactions between
electrodes are relatively constant. These regions are segmented using an effi-
cient algorithm, which also assigns a representative interaction pattern to each
region.

2 Methodology

We first compute a class field ct,f,e1,e2
which specifies, for each time, frequency,

and electrode pair, if synchronization between the electrodes is significantly
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higher (c = 1), lower (c = −1), or equal (c = 0) than a baseline level corre-
sponding to a neutral condition. The estimation of this class field is detailed
in [1]. If one defines a synchrony pattern (SP) as an element from {−1, 0, 1}Ns,
where Ns is the number of non-redundant electrode pairs, then it is clear that
the class field c can be seen as a multi-band image ct,f in TF space, where an
SP is associated to each pixel. To segment this image, we use a seeded region
growing algorithm where the seeds are points in the TF plane. The algorithm
requires a distance measure d between two SP’s, which in our case is given by:

d(p1, p2) =
1

Ns

Ns
∑

s=1

(1 − δ(p1,s − p2,s)) , (1)

where δ is the Kronecker delta function, and p1, p2 ∈ {−1, 0, 1}Ns. One can also

estimate the average neighbor distance d̂(t, f) defined as:

d̂(t, f) =
1

|N(t, f)|

∑

(t′,f ′)∈N(t,f)

d(ct,f , ct′,f ′), (2)

with N(t, f) a neighborhood of (t, f).
The actual region growing algorithm is as follows: given a set of Nk seeds

(tk, fk), k = 1, . . . , Nk,

1. Initialize a region label field lt,f = −1 for all t, f . The value −1 indicates
that the point t, f is yet unlabeled.

2. Assign a different label to each seed (tk, fk); e.g., let ltk,fk
= k for k =

1, . . . , Nk.

3. Let rk = ctk,fk
be the initial representative SP (RSP) for each region k.

4. Initialize a priority queue Q and insert each seed (tk, fk) in Q with priority

given by −d̂(tk, fk).

5. While Q is not empty, do the following:

(a) Pull the highest-priority point (t, f) from Q. Let k = lt,f be the
region label assigned to this point.

(b) For each (t′, f ′) ∈ N(t, f) such that lt′,f ′ = −1 and d(rk, ct′,f ′) < ǫ

(where ǫ is a given threshold), let lt′,f ′ = k, and add (t′, f ′) to the

queue with priority given by −d̂(t′, f ′).

(c) If the region label field l has changed, re-compute the RSP for region
k as the item-by-item mode of all SP’s observed within the region;
that is, rk,s = mode(t,f):lt,f =k {ct,f,s} , for s = 1, . . . , Ns.

One can obtain a fully-automated segmentation by cleverly choosing the
seeds. An unlabeled pixel (t, f) is a good candidate for a seed if it is similar
to its neighbors, and all of its neighbors are also unlabeled. This suggests the
following seed selection algorithm:
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1. Let C be the set of all unlabeled points (t, f) whose neighbors are also
unlabeled.

2. Let (t∗, f∗) = arg min(t,f)∈C{d̂(t, f)} be a new seed. Without resetting
the label field l, grow the new seed and label the new region accordingly.

3. Repeat the procedure until some criteria is met (e.g., a maximum number
of seeds is reached, or some percentage of the TF plane has been labeled).

The regions obtained with region-growing may contain holes (unlabeled
points inside the region) or very rough edges, and thus require some kind of
regularization. We have chosen to use a Bayesian classification approach with
a prior Markov random field (MRF) model [5]. Specifically, l is assumed to be
Markovian, with an associated energy function U(l) given by:

U(l) = −
1

Ns

∑

t,f

Lt,f(lt,f ) + λt

∑

t,f

V (lt,f , lt+1,f ) + λf

∑

t,f

V (lt,f , lt,f+1), (3)

where λt and λf are, respectively, the time and frequency granularity param-
eters, V (x, y) = 1 − 2δ(x − y) is the Ising potential function, and Lt,f (k) is a
pseudo-log-likelihood function given by:

Lt,f(k) =











log PL(ct,f | k) for k 6= −1,

1
Nk

[

∑

k 6=−1 Lt,f(k)
]

− maxk 6=−1{Lt,f(k)}, for k = −1,

(4)

with PL(ct,f | k) the probability of observing the SP ct,f given that (t, f) belongs
in region k. These probabilities can be written as

log PL(ct,f | k) =

Ns
∑

s=1

log pk,s(ct,f,s), (5)

where pk,s(q), q ∈ {−1, 0, 1} is the probability of observing class q for the
electrode pair s, across region k, which can be estimated from the segmentation
obtained from the region-growing algorithm simply by counting, for each region
and each electrode pair, the number of occurrences of each class q. Note that,
for k 6= −1, Lt,f(k) represents a true log-likelihood, whereas Lt,f (−1) measures
the uncertainty of (t, f) belonging in some region (i.e., a pseudo-likelihood of
(t, f) not belonging in any region).

Regularization of the label field l is achieved by minimizing U(l). In partic-
ular, we use a Gibbs sampler algorithm with the region-growing segmentation
as starting point.

3 Results

The procedure described above has been tested with real EEG data from a
figure categorization experiment [3] using ǫ = 0.3, λt = 2.0, λf = 0.7, 500 Gibbs
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Figure 1: Regularized segmentation for the figure classification experiment: the
time-frequency plane (left) is segmented in regions with homogeneous synchrony
patterns (right). Each synchrony pattern represents the interaction between all
electrode pairs: red and green areas represent significant increases and decreases,
respectively, of synchrony with respect to a neutral condition (baseline).

sampler iterations, and 12 seeds. The resulting segmentation and representative
SP’s are shown in Figure 1. From a neurophysiological point of view, these
SP’s may be related to specific cognitive tasks; however, each of these patterns
is statistically estimated from all SP’s within the corresponding region, and
thus have different degrees of confidence. One way to estimate the degree of
confidence for each region k is by means of a homogeneity coefficient (HC) H(k),
which in our case is given by:

H(k) = 1 −

∑

(t,f):lt,f=k d̂(t, f)
∑

(t,f):lt,f=k 1
. (6)

The HC is also shown in Figure 1 for each region. It is worth mentioning that
those regions with higher HC correspond to the first points obtained with the
seed selection algorithm, which suggests that our selection criteria is adequate.

4 Conclusions

We have presented an automated EEG synchrony visualization methodology
which provides a detailed description of the interactions between all electrode
pairs for time-frequency regions where those interactions are relatively constant,
and thus may be related to specific neural processes.
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Perspectives for future work include: (1) a region-merging algorithm for re-
gions with similar RSP’s (e.g., regions 3 and 4, or regions 9 and 12, in Figure 1),
(2) the use of segmented synchrony maps for the study of an psychophysiological
EEG experiment.
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