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Correspondence should be addressed to José A. Vallejo-Rodrı́guez, jvallejo@galia.fc.uaslp.mx

Received 23 January 2009; Accepted 21 April 2009

Recommended by José F. Cariñena
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1. Introduction

The usual interpretation of time in physics (at least in classical mechanics) is as follows.
Consider a dynamical system described by a Hamiltonian H, which is a differentiable
function defined on some symplectic manifold (M,ω). Physical trajectories are then
identified with integral curves of a vector field XH ∈ X(M) such that iXω = dH. These
integral curves define a flow, that is, a differentiable mapping Φ : I × M → M given by
Φ(t, p) = cp(t), where cp : I → M is the maximal integral curve passing through p ∈ M
at t = 0, and I ⊂ R is the maximal interval of definition of the set {cp}p∈M of integral curves.
Then, “time” is the space of values of the parameter t, that is, the subset I ⊂ R with a manifold
structure. In some cases (e.g., dynamics on compact manifolds) I = R and then becomes a
one-dimensional Lie groupwith the operation of addition although, in general, this operation
is only locally defined.
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Our goal in this paper is to describe in analog terms what should be considered as
“time” when we deal with a dynamical system implementing some kind of supersymmetry
or, in other words, when we deal with a dynamical system represented by a supervector field
on a supermanifold.

Let us say, in advance, that the answer is not new. The so-called “supertime” has
appeared in physics some time ago, but its introduction almost always has been a matter
of esthetics (to preserve the supersymmetric duality one has to give a “super” partner of the
bosonic time t) or an ad hoc convenience. For example, in [1] E.Witten observed that the index
formula could be understood in terms of a supersymmetric quantum mechanical system in
which the parameter space is given by pairs (t, θ), with t bosonic and θ fermionic. In [2],
L. Álvarez-Gaumé gave a complete proof of this result using this “supertime.” The paper
[3] introduces “supertime” to supersymmetrize the setup of classical mechanics viewed as a
field theory in one time and zero space dimensions, an idea found later in P. G. O. Freund’s
book [16, see Chapter 10]. Also, a supertime (t, θ) was used by D. Freed in [4] to construct
a quantization model for the superparticle (a detailed account can be viewed in [5]). In all
these works, supertime is a convenient construct, but not a necessary geometric object whose
existence is demanded by the mathematical structure of the theory. Indeed, it is not unusual
to find in physics literature some “super” generalizations of classical geometric constructions
such as geodesics, normal coordinates, and integral curves of Hamiltonian fields, in which the
parameter is just the common bosonic time t. Also, there are applications in physics in which
supertime has the form of a single odd parameter (as in [6]) and others with a supertime
involving two odd parameters θ, θ and an even one t, thesemodels being referred to asN = 2
supersymmetric models (see [7–9]). Of course, there are also N-supersymmetric models
with N ≥ 2 (see, e.g., [10]). As an alternative reference for the study of supermechanics in
supermanifolds (in the sense we will consider in these notes, following Leites, Kostant, and
Manin) but from the Lagrangian and Hamiltonian viewpoints, we refer the reader to [11, 12].

Thus, in view of this variety of constructions, it seems interesting to establish some
criterion to determine what the analog of “time” (as understood in classical mechanics)
should be. We offer one based on the interpretation of time exposed above, and we will
try to show why it is necessary to introduce (t, θ) as the parameter space for dynamical
theories on supermanifolds bymeans of some examples (which, however, are general enough
as will be explained later). This is a consequence of a profound result due to J. Monterde
and A. Sánchez-Valenzuela (see [13]) that seems to be not very well known by physicists
working with supermanifolds, maybe because of its formal statement and proof. The result
is a completely general theorem of existence and uniqueness of solutions to differential
equations on supermanifolds. It gives the most general answer in the sense that a procedure
is provided to prove the existence of solutions for an arbitrary supervector field.

In the second part of the paper, we analyze the construction of “covariant
superderivatives” and explore their relationship with supertime. Also, we consider their
meaning within the context of the theory of Lie supergroups and superalgebras, showing
how their introduction amounts to a redefinition of the underlying Lie supergroup structure
of supertime.

The theory of superdifferential equations was initially studied by V. Shander in [14],
a paper virtually unknown outside the circle of soviet mathematicians that deserves much
more attention. Shander studied some particular classes of supervector fields that can be
integrated and classified them into “normal forms,” a classification that, however, was
incomplete and superseded by the treatment in [13], but nevertheless contained the basic
ideas about how to deal with the problem of integrating supervector fields. Both Shander
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and Monterde and Sánchez-Valenzuela also offered some particular examples considering
the supermanifold (M,Ω(M)), which is well known and understood, as its superfunctions
are just differential forms. We will also work with this supermanifold as a concrete example.
In this way, we hope that we can explain the mathematical theory behind supertime in the
spirit of the physics approach.

2. The Algebraic Language in Differential Geometry and Physics

Throughout this paper we assume that the reader has some familiarity with the elementary
facts about differential geometry and manifold theory as presented in any of the numerous
textbooks on mathematical methods for physicists (see e.g.[15–18].) However, we do not
assume any previous exposition to supermanifold theory.

In physics, it is usual to describe a system in terms of its observables. After all, we
obtain information about the system bymakingmeasurements on it, that is, by evaluating the
action of some observable on the state of the system. Now, how do we describe observables
(in the classical -non-quantumsetting)?

Think of a system composed by one single particle. Classically, to describe a state we
need its position x = (x1, x2, x3) and momentum p = (p1, p2, p3) (we are assuming that there
are some submanifolds of R

3 in which x and p take values). Thus, we need a 2 · 3 = 6-
dimensional manifoldMwhose elements are pairs (x,p), the classical states.M itself is called
the phase space of the system, and it usually has a cotangent bundle structure M = T ∗Q for
some submanifoldQ ⊂ R

3. Then, an observable is a function on the phase space. For example,
the kinetic energy T : M → R is given by T(x,p) = (1/2m)‖p‖2, where ‖ · ‖ denotes the norm
on the cotangent space to the submanifold Q ⊂ R

3 associated to the induced metric, and m is
the mass of the particle.

As the equations of classical mechanics are differential equations involving observ-
ables, we can assume some degree of regularity for these functions; indeed, it is usual to take
infinitely differentiable functions, so the space of classical observables is in turn of the type
C∞(M). What is the structure of these spaces C∞(M)withM an n-dimensional manifold? In
short (see [19, 20] as advanced references), they have the property that each time we take a
subset U ⊂ M which is open, we have a subset C∞(U) ⊂ C∞(M) in such a way that

(i) C∞(U) is an algebra (where the sum and product are given by (f + g)(p) = f(p) +
g(p) and (f · g)(p) = f(p)g(p) for any p ∈ M and f, g ∈ C∞(U));

(ii) for each pair of open sets V ⊂ U of M, there is defined a restriction map ρUV :
C∞(U) → C∞(V ) such that

(1) ρUU = idU for all U ⊂ M open,
(2) whenever we have open sets W ⊂ V ⊂ U, ρUW = ρVW ◦ ρUV ,
(3) ifU ⊂ M is open and {Ui}i∈I is an open covering ofU, given two f, g ∈ C∞(U)

such that for all i ∈ IρUUi
(f) = ρUUi

(g) (in other words, the restrictions f |Ui , g|Ui

to an element of the covering coincide), then, f = g.

These properties are embodied in the mathematical notion of a sheaf. We say that the
assignment M ⊃ U �→ C∞(U) ⊂ C∞(M) turns C∞(M) into a sheaf of (commutative)
algebras of differentiable functions on M, and when we want to stress this fact, we write
C∞

M instead of C∞(M). Indeed, if we are given the topological structure of M (i.e., we are
given a way to distinguish the sets U ⊂ M which are open) and we specify an algebra A
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(playing the role of C∞(M)) with some mild properties (see [19]), the manifold structure of
M is completely determined; this is why C∞(M) is called the structural sheaf of the ordinary
manifold M. What is even more: all the differential geometry on M (and hence “almost all”
the physics on M) can be described in terms of C∞(M) and some other algebraic structures
derived from it.

As an example, take a differentiable vector field X on M (this is denoted by X ∈
X(M)). Traditionally one sees its value at a point p, Xp as an equivalence class of curves
c : R → M on the manifold, where two curves c1, c2 are viewed as equivalent at a point
p ∈ M if and only if c1(0) = p = c2(0) and (dc1/dt)(0) = (dc2/dt)(0). But it is easy to see that
this is the same as to give a mapping Xp : C∞(M) → R such that if f, g ∈ C∞(M), then Xp is
R-linear and

Xp

(
f · g) = Xp

(
f
) · g(p) + f

(
p
) ·Xp

(
g
)
, (2.1)

(see [21]). The idea is to define, for a given f ∈ C∞(M), the action of Xp on f by Xp(f) =
(d/dt)|t=0(t �→ f ◦c), where c is a representant of the classXp, and then to apply the chain rule
to get the operator representation of X as X = Xi(∂/∂xi), where Xi ∈ C∞(M) (for 1 ≤ i ≤ n)
and ∂/∂xi acts like the usual partial derivative in R

n. In particular,

∂

∂xi

(
f · g) =

∂f

∂xi
· g + f · ∂g

∂xi
. (2.2)

Thus, we can characterize X(M) as the set of mappings X : C∞(M) → C∞(M) which are
linear with respect to the sum of functions and products by scalars of R and, in addition,
satisfy (2.1) for all p ∈ M. (It is essential, in order to make this identification, that we deal
with the C∞ category. For Cr vector fields (0 < r < ∞) this is no longer true.) For obvious
reasons, this set is called the set of derivations of C∞(M), and it is denoted DerC∞(M).

Actually, DerC∞(M) has a lot more of structure. It is a real vector space and a C∞(M)-
module, which is much the same as a K-vector space but now C∞(M) is a ring, not a field K.
Nevertheless, this is enough to define the dual C∞(M)-module (akin to the dual V ∗ of a K-
vector space V ) Der∗ C∞(M), and this turns to be precisely the space of differential 1-forms
Der∗ C∞(M) = Ω1(M). From X(M) and Ω1(M), by taking tensor and exterior products,
we can construct any tensor field on M, and develop in this way all the usual concepts of
differential geometry (see [21]).

To summarize: what is really important to get a physical description of a dynamical
system, is to know what its observables are. Mathematically, this is reflected in the fact that
in order to characterize the phase space M, it is enough to say what are the differentiable
functions on M, that is, to give the structural sheaf C∞(M).

3. Review of the Classical (Nongraded) Case

Consider first the problem of determining the integral curves of a vector field on a classical
manifold M: if in a coordinate system {xi}ni=1 the vector field X ∈ X(M) has the local
expression (we use Einstein’s summation convention)

X = Xi ∂

∂xi
, (3.1)
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what we want is to find the curves c : Ic ⊂ R → M satisfying

dc

dt
(t) = Xc(t), ∀t ∈ Ic, (3.2)

subject to an initial condition c(t0) = p and (dc/dt)(t0) = Xp. Let us suppose, for the sake of
simplicity, that all the integral curves are defined for all the values of the time parameter, that
is, Ic = R for every c satisfying (3.3) (this is the case, e.g., of compact manifolds) and take
t0 = 0. Under this assumption, it can be proved that we have a family of diffeomorphisms
{ϕt}t∈R

, where

ϕt : M −→ M,

p �−→ ϕt

(
p
)
= cp(t),

(3.3)

cp being the integral curve of X such that cp(0) = p. Moreover, the following basic properties
hold true:

ϕt+s = ϕt ◦ ϕs,

ϕ−t =
(
ϕt

)−1
.

∀t, s ∈ R. (3.4)

It is very important to note the converse: each time we have a family {ϕt}t∈R
of

diffeomorphisms of M satisfying (3.4), we can construct a vector field X ∈ X(M) associated
to it as

X
(
p
)
=

d

dt

∣∣∣∣
t=0

(
t �−→ ϕt

(
p
))
. (3.5)

Remark 3.1. Diffeomorphisms on M extend themselves to automorphisms on any algebraic
structure defined over M (vector bundles, exterior algebras, etc.). For instance, a diffeomor-
phism ϕ on M can be viewed as an automorphism of the algebra C∞(M) by means of the
action ϕ(f) = f ◦ ϕ−1 for any f ∈ C∞(M).

We insist on the fact that if we have computed in some way a familiy of
automorphisms, we get the associated vector field (the infinitesimal generator) by taking
derivatives with respect to the parameter of the family. This fact will be essential to later introduce
the notion of “supertime,” in Section 5.

At this point, we want to stress yet another feature of this integration procedure. It is
well known that every time a Lie group appears, so does its associated Lie algebra. In the
case we have just considered (with the specific assumption that Ic = R), the parameter family
forms a Lie group: it is just the additive group R, whose Lie algebra is trivial, being abelian
unidimensional. We will see later, in Section 6, that when working with supermanifolds,
several possible Lie supergroup structures for the family of integrating parameters appear,
and this has definite consequences regarding the class of vector fields that can be integrated.
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4. Differential Equations on Supermanifolds

Now consider the case of supermanifolds. F. Berezin was the first researcher to systematically
study the interchange between bosons and fermions in a quantum mechanical system (see
[22]. The earliest attempt known to the authors is due to J. Martin [23]), and to treat this
operation as if it were a symmetry one. He discovered that a unified formalism, encompassing
both fermions and bosons, was possible if one introduces a degree for each characteristic
object in the theory, those associated to fermions carrying degree one and those associated
to bosons, degree zero. The rules for operating with this degree were easily obtained from
the results of applying the fermion-boson exchange symmetry to the system, and they were
found to correspond to the rules of the ring Z2 = {0, 1} under the sum modulo 2. Of course,
observables are examples of what we understand by “characteristic objects in the theory,”
so if we want to allow from the start the possibility of having a symmetry in our system
with the same properties as the fermion-boson interchange, we must assign a degree to each
observable, and wemust do that in a way compatible with the rest of algebraic structures that
we have defined on C∞(M). There are different (and some nonequivalent) ways to carry on
that “Z2 extension,” and we will consider here the one proposed by F. Berezin [22], B. Kostant
[24], D. Leites [25], and Y. I. Manin [26]. Alternative approaches can be found in [27–29], and
a good review of the general theory and the relations between these approaches in [30].

In this context, a supermanifold can be thought as an ordinary manifold where the
structural sheaf of differentiable functions C∞

M on M (which is a sheaf of commutative
algebras) has been replaced by a sheaf of (Z2-commutative) superalgebras AM, so now to
each open setU ⊂ Mwewill associate a superalgebraAU. The supermanifold is then written
M = (M,AM).

Remark 4.1. A superalgebra is simply a vector space A which has a Z2-grading, that is, it
admits a direct sum decomposition A = A0 ⊕ A1 (the factors are indexed by the elements
of Z2) and has a product adapted to that decomposition, that is, a binary operation · : A ×
A → A such that Ai · Aj ⊂ A(i+j) mod 2 (for i = 0, 1). The elements of Ai (i = 0, 1) are called
homogeneous of degree i, and it is clear that any element of the algebra is a linear combination
of homogeneous ones. If v ∈ Ai we write |v| = i to express the degree of v.

A superalgebra g is a Lie superalgebra if its product [, ] : g × g → g satisfy the graded
skew-symmetry condition

[
x, y

]
= −(−1)|x||y|[y, x], (4.1)

and the graded Jacobi identity

(−1)|x||z|[[x, y], z] + (−1)|y||x|[[y, z], x] + (−1)|z||y|[[z, x], y] = 0. (4.2)

These conditions are just generalizations of the usual ones characterizing a Lie algebra, but
taking into account the “golden rule of signs:” a ·b = (−1)|a||b|b ·a (i.e., each time two elements
of the superalgebra are interchanged, a − 1 factor powered to the product of the degrees
appear).

A more general setting consists in a sheaf of Z-graded algebras. In this case we have a
decomposition A = ⊕k∈Z Ak and a product such that Ak ·Al ⊂ Ak+l.
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Every Z-graded algebra can be turned into a superalgebra simply by collecting all the
subspaces with an even index in A0 and those with an odd index in A1. That is, we write
A = A0 ⊕A1, where A0 = ⊕r even Ar and A1 = ⊕s odd As.

The definition of supermanifold implies some features that are absent in the classical
setting. Given an open set U, we cannot think of AU as an algebra of real functions (as these
are commutative); indeed, we cannot evaluate the elements of AU on points of M as is done
for usual functions. This would require specifying first a setU containing the point, but even
if this is the case, it should be specified how to relate the result of the evaluationwith the result
of any other evaluation taking all the possible setsU containing the point. Furthermore, if we
insist on considering a supermanifold as a set of points, we run into trouble when we deal
with observables on it (which should be real-valued functions): all of them must give zero
when evaluated on “odd points” (to preserve parity, note that R only has even part). Thus,
it is useless to speak of “points” of a supermanifold. It is in this sense that sometimes it is
said that “a supermanifold does not have points.”(However, it is possible to use the so-called
functor of points in such a way that local expressions of supervector fields, superforms, etc.,
coincide with these usually used in Physics (see [31]).)

We can develop a differential geometry in a supermanifold following the guidelines
exposed in Section 2. The crucial point is to keep in mind that all the constructions must be
made from the sheaf AM. As a concrete example, take the supermanifold M = (M,ΩM),
where ΩM = ⊕k∈Z Ωk(M) are the differential forms on M. Here, Ωk(M) = {0} if k < 0 and
Ω0(M) = C∞(M), and the product is given by the wedge product of forms ∧. Of course,
for each U ⊂ M open, we can consider the differential forms on U, ⊕k∈Z Ωk(U), so we have
a sheaf of Z-graded algebras and, as stated above, also a sheaf of superalgebras (which is
sometimes known as the Cartan algebra). A superfunction has to be understood now as an
element ω =

∑
ω(i), where ω(i) ∈ Ωi(M) are the homogeneous components of ω and the sum

is taken for i ≥ 0.
The simplest case is the supermanifold (R,Ω(R)), also denoted by R

1|1. Although
simple, this is a very interesting example because it also illustrates the notion of a Lie
supergroup. In the case of this supermanifold, we will denote dt by θ. Thus, note that
superfunctions are now differential forms on R and these can be written f(t) + g(t)θ with
f , g differentiable functions f, g : R → R. A classical theorem of Frölicher-Nijenhuis states
that any derivation of a Cartan algebra (such asΩ(R)) can be expressed in the formLK+iJ for
some pair of tensors J,K over the base manifold. In our case, the base is R and J = ∂/∂t = K,
where t is the canonical global coordinate of R. Note that the effect of the basis derivations on
an element f(t) + g(t)θ is given by

L∂/∂t

(
f(t) + g(t)θ

)
=

∂f

∂t
+
∂g

∂t
θ,

i∂/∂t
(
f(t) + g(t)θ

)
= g(t).

(4.3)

Due to these formulae, we will write

L∂/∂t ≡ ∂

∂t
, i∂/∂t ≡ ∂

∂θ
. (4.4)

(Note that the degrees as Z2-graded endomorphisms are |∂/∂t| = 0, |∂/∂θ| = 1).
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Table 1: Lie supergroup structures on R
1|1.

Type Product
1 f1(t) + f2(t) + (g1(t) + g2(t))θ
2 f1(t) + f2(t) + g1(t)g2(t) + (g1(t) + g2(t))θ
3 f1(t) + f2(t) + (ef2(t)g1(t) + g1(t))θ

Table 2: Lie supergroup structures on R
1|1.

Type Product
1 (t1 + t2, θ1 + θ2)
2 (t1 + t2 + θ1θ2, θ1 + θ2)
3 (t1 + t2, e

t2θ1 + θ1)

As we have mentioned, R
1|1 admits several Lie supergroup structures. For reference,

we list them here (see [32] for details), giving the result of the composition (f1(t) + g1(t)θ) ∗
(f2(t) + g2(t)θ) as listed in Table 1.

This is not the standard way of presenting these Lie supergroup structures. Rather, use
is made of the global supercoordinates t and θ on R

1|1, which acts as t(f1(t) + g1(t)θ) = f1(t),
θ(f1(t) +g1(t)θ) = g1(t), so an α ∈ R

1|1 can be written α = (t(α), θ(α)) and we get now Table 2.
What is the analog of a classical vector field in this setting? To characterize it we isolate

its main property: it must act as derivations on the algebra C∞(M) (recall (2.1)). Thus, a
vector field on the supermanifoldM = (M,ΩM)will be a derivation V : ΩM → ΩM, and this
means that V is a graded morphism of Ω(M) (i.e., V is R-linear and has a certain degree |V |:
V (Ωk(M)) ⊂ Ωk+|V |(M)), and it verifies Leibniz’s rule: V (α∧β) = V (α)∧β+(−1)|α||V |α∧V (β).
Well-known examples of derivations onΩM are the exterior differential, d, the Lie derivative
with respect to a vector field X ∈ X(M), LX , and the insertion iX . Indeed, these operators
considered as a subset of the graded endomorphisms of Ω(M) (with degrees |LX | = 0, |iX | =
−1, |d| = 1, for any X ∈ X(M)) generate a Lie superalgebra A = 〈{LX, d, iX}〉, where the
product is the composition of endomorphisms and the Lie superbracket [−,−] on A is given
by the graded commutator of graded endomorphisms: [E, F] = E ◦ F − (−1)|E‖F|F ◦ E, for all
E, F ∈ Ω(M). These Lie superbrackets are very easily computed by using Cartan calculus; for
example

[LX, iY ] = LX ◦ iY − (−1)0·(−1)iY ◦ LX = LX ◦ iY − iY ◦ LX = i[X,Y ]. (4.5)

Now, we would like to know what does it mean to integrate such a vector field. To be
precise, consider the problem of integrating the derivation given by the exterior differential
d : ΩM → ΩM. This is a degree 1 derivation, in the sense that d(Ωi(M)) ⊂ Ωi+1(M) and

d
(
α ∧ β

)
= dα ∧ β + (−1)1·|α|α ∧ dβ, ∀α, β ∈ ΩM. (4.6)

By analogy with (3.3) we seek for a curve ω : R → ΩM (also denoted ω(t)) such that

dω

dt
(t) = d(ω(t)), ∀t ∈ R. (4.7)
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To find a solution we may proceed formally and construct the exponential of d, so we would
have

ω(t) = etdω0, (4.8)

ω0 ∈ ΩM being the initial condition ω(0) = ω0. Here we understand that
etd=

∑∞
k=0((t · d)k/k!), although we do not have any a priori notion of convergence for such

a series. Of course, for an arbitrary derivation (4.8) would not make sense, but here an
important property of the particular derivation d comes into play: Its nilpotency. As d2 = 0,
the series in (4.8) reduces to a finite sum and, indeed,

ω(t) = (I + t · d)ω(0), (4.9)

where I ∈ EndΩM is the identity morphism.

5. The Need for Supertime

Thus, it seems that we have solved the problem of integrating a supervector field such
as d, but still there are some technical questions pending. Recall that in the classical case
we had a family of induced diffeomorphisms {ϕt}t∈R

(which in turn extend their action as
automorphisms to all of Ω(M)); this property is crucial in order to get a well-defined vector
field on M from them. We should ask for a similar property to the morphisms obtained
through (4.8). Indeed, if we consider C∞(M) instead ofΩ(M) (or the sheafA in general), we
must recover the usual results, and there is a theorem implying that we must demand that
the morphisms etd = I + t · d be exterior algebra automorphisms (see [33]): let E be a vector
bundle over a manifold M, then, each automorphism of Γ(

∧
E) induces an isomorphism of

E which, in turn, induces a diffeomorphism on M.
Now, let us check whether {et·d}t∈R

is a family of automorphisms or not. Take α, β ∈
Ω(M), with α ∈ Ω|α|(M). Then, on the one hand,

et·d
(
α ∧ β

)
= (I + t · d)(α ∧ β

)

= α ∧ β + t · d(α ∧ β
)

= α ∧ β + t · dα ∧ β + (−1)|α|t · α ∧ dβ,

(5.1)

and on the other,

et·dα ∧ et·dβ = (α + t · dα) ∧ (
β + t · dβ)

= α ∧ β + t · dα ∧ β + t · α ∧ dβ + t2 · dα ∧ dβ.
(5.2)

It is then clear that

et·d
(
α ∧ β

)
/= et·dα ∧ et·dβ, (5.3)
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so {et·d}t∈R
is not a family of automorphisms and we cannot claim to have solved the

problem.
A comparison of (5.1) and (5.2) shows us the way out to this impasse. Let us write

again these expressions, but now treating t as a formal parameter, not necessarily in R, so
we make no assumption about its commutativity with elements of Ω(M). Repeating the
computations we get

et·d
(
α ∧ β

)
= α ∧ β + t · dα ∧ β + (−1)|α|t · α ∧ dβ,

et·dα ∧ et·dβ = α ∧ β + t · dα ∧ β + α ∧ t · dβ + t · dα ∧ t · dβ.
(5.4)

The problem here is that the term containing two instances of the parameter (i.e., t · dα ∧ t ·
dβ) should vanish, and a sign is required to pass from α ∧ t · dβ to (−1)|α|t · α ∧ dβ. These
inconveniences can be solved altogether if we take not t ∈ R, but t = θ an anticommuting
parameter (so θ2 = 0) of Z-degree 1 (so θ · α = (−1)|α|α · θ). With these assumptions, it is
immediate that

eθ·d
(
α ∧ β

)
= eθ·dα ∧ eθ·dβ, (5.5)

and the problem of integrating the vector field d on the supermanifold M = (M,Ω(M)) will
have a solution in the same sense that we integrate vector fields on a manifold: it admits a
one-parameter group of integral automorphisms.

In Section 3 we saw that the differential equation is recovered by taking derivatives
with respect to the parameter of the family of integrating automorphisms, so we are led to
consider ∂/∂θ along with the usual operator ∂/∂t. Indeed, note that if we write ω(t, θ) =
(I + θ · d)ω0 for the solution that we have found, then

dω

dt
(t, θ) = d(ω(t, θ)), ∀t ∈ R, (5.6)

would not be true, as the left-hand side is trivially zero. Consider nowD = D0+D1 = (∂/∂t)+
(∂/∂θ) and put V = V0 + V1 = 0 + d, with this new notation we get the super differential
equation:

Dω(t, θ) = V (ω(t, θ)), (5.7)

which can immediately be splitted into two equations:

D0ω(t, θ) = V0(ω(t, θ)), D1ω(t, θ) = V1(ω(t, θ)), (5.8)

and is easy to see that in this context, ω(t, θ) is a solution to (5.7). Thus, if we accept the
usual interpretation of time as the parameter of the family of integrating automorphisms
of a dynamical vector field, to be consistent, we must also accept the idea that, when
supermanifolds are used, a supertime (t, θ) (where θ is an anticommuting parameter) should
be used instead of t.
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Of course, for certain classes of supervector fields a single commuting parameter t can
suffice (this is the case, e.g., of LX on the supermanifold M = (M,Ω(M))). In other cases, as
we have shown that it is enough with a single anticommuting parameter. By the way, let us
remark that a single “odd time derivative” D1 = ∂/∂θ has been used in physics, notably by
O. F. Däyi in his study of quantum field theories (see [6]). But, in general, when considering
some dynamical system on a supermanifold as described by a supervector field, we must
take integrating parameters which are a mixture of both cases, that is, of the form (t, θ).

6. The Interpretation of Initial Conditions and
the Question of Uniqueness

A glance at equations (5.8) tells us that when we have a superdifferential equationDω(t, θ) =
V (ω(t, θ)), the homogeneous components of D and V are ω-related, so it follows that the
following conditions must be satisfied:

[D0, D1]ω(t, θ) = [V0, V1]ω(t, θ), [D1, D1]ω(t, θ) = [V1, V1]ω(t, θ). (6.1)

In the classical case, we have only one operator,D0 = d/dt, and only one equation,D0f = V0f
(for f ∈ C∞(M)), which is trivially satisfied as [D0, D0] = 0 = [V0, V0] for any D0, V0 ∈
X(M). Moreover, this unique integrating vector field D0 = d/dt generates the unique one-
dimensional (abelian) Lie algebra, that is, in this case the space of integrating parameters has
the structure of a group.

In the setting of supermanifolds, it is natural to expect that relations (6.1) impose some
conditions onto the superfields to be integrated because they say that {D0, D1}must generate
a Lie superalgebra with dimension (1, 1) (this is because we have two generators, one of
which (D0) is even and the other (D1) is odd), and it is well known that there are 3 non-
isomorphic Lie superalgebras with this dimension (see [34]). Thus, assuming that {D0, D1}
close a Lie superalgebra, there must be real constants a and b (with ab = 0), such that

[D0, D1] = aD1, [D1, D1] = bD0, (6.2)

and a superdifferential equation Dω(t, θ) = V (ω(t, θ)) will make sense only for those
superfields V = V0 + V1 satisfying:

[V0, V1] = aV1, [V1, V1] = bV0. (6.3)

In contrast with the classical case, these equations are not always satisfied for a vector
field on a supermanifold. For example, let W be the supervector field defined by W0 = 0 and
W1 = d + iX (X ∈ X(M)) on the supermanifold M = (M,Ω(M)). Proceeding as we did in
Section 5, we get that

ω(t, θ) = I + θ · (d + iX) (6.4)



12 Advances in Mathematical Physics

will define a family of automorphisms. However,

D1ω(t, θ) =
∂

∂θ
(I + θ · (d + iX)) = d + iX, (6.5)

and consequently,

W1(ω(t, θ)) = (d + iX)(I + θ · (d + iX)) = d + iX − θ · LX = D1ω(t, θ) − θ · LX, (6.6)

so D1ω(t, θ)/=W1ω(t, θ).
What is wrongwith this example? In the example of Section 5 the supervector fieldwas

V = V0 + V1 = 0 + d and the graded bracket relations between its homogeneous components
were

[0, 0] = 0, [0, d] = 0, [d, d] = 0, (6.7)

that is, the homogeneous components of the vector field V = dgenerate a Lie superalgebra
structure on the supervector space 〈{V0, V1}〉. However, for the case at handW = W1 = d+ iX ,
the brackets between homogeneous components are

[0, 0] = 0, [0, d + iX] = 0, [d + iX, d + ix] = 2LX /= 0, (6.8)

and these do not define a Lie superalgebra structure.
As mentioned, this example seems to imply that not every differential equation

on a supermanifold will make sense and indeed, for a long time, it was thought that
this is the case. However, J. Monterde and A. Sánchez-Valenzuela in [13] were able to
construct a procedure to integrate any superdifferential equation, regardless of whether the
homogeneous components of the supervector field V = V0+V1 close a Lie superalgebra or not.
Their idea was to get rid of the conditions on the homogeneous components by introducing
the so called “evaluation morphism” on points, ev|t=t0 (this morphism had already appeared
in [32]); to do this, we need first to pose the superdifferential equations as

ev|t=t0Dω = ev|t=t0V (ω). (6.9)

The meaning of this expression, aside of technicalities, is “first, take a congruence modulo θ
and then evaluate in t = t0.” (It is not easy to give, in a few sentences, a motivation for the
introduction of ev|t=t0 which can be considered as “intuitive”. However, we can offer a quick
categorical argument: in the category of supermanifolds the terminal object is ({∗},R), a point
with the algebra of constants on it, with terminal morphism C : (M,AM) → ({∗},R). On the
other hand, every supermanifold has a preferred embedding δ : (M,C∞(M)) → (M,AM)
which induces a graded algebra morphism f ∈ A �→ f̃ ∈ C∞(M), and each point p ∈ M
defines a morphism δp : ({∗},R) → (M,AM) simply by declaring that its associated graded
algebra morphism is f ∈ A �→ f̃(x) ∈ R. Then, the evaluation morphism is determined by
these natural morphisms: ev|p = (δp ◦ C)∗.) We can see how it works by reconsidering the
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example of W = W1 = d + iX , for which we have found (see (6.6)) that

D1ω(t, θ) = W1(ω(t, θ)) + θ · LX. (6.10)

Applying the evaluation morphism, the term θ · LX vanishes, and we get

ev|t=t0D1ω(t, θ) = ev|t=t0W1(ω(t, θ)). (6.11)

Thus, the introduction of the evaluation morphism allows us to give an interpretation
to the “initial conditions” for a superdifferential equation: the imposition of initial conditions
is a procedure to project the equation onto homogeneous components in such away that these
verify the Lie superalgebra conditions (6.3), so the equation can be effectively integrated. In
this way, the theory in the graded setting is complete and its results are analog to those of the
classical case. We refer the reader to [13] for the details and complete proofs.

7. Covariant Superderivatives and the Lie Supergroup R
1|1

In physics, it is common to find expressions involving the so-called covariant superderiva-
tives. In (1|1)-supermechanics, the covariant superderivative is the superfield θ(∂/∂t)+∂/∂θ,
and in this section we would like to explore the connection between this superfield and the
integrating model ∂/∂t + ∂/∂θ. To be precise, we will see that no matter which supergroup
addition law one uses in the parameter superspace R

1|1, one is always able to provide a
unique (and always the same) local solution to a given differential equation. In particular,
the pair ∂/∂t, θ(∂/∂t) + ∂/∂θ plays exactly the same role as the pair ∂/∂t + ∂/∂θ as far as the
integration process is concerned. The only difference is that the pair ∂/∂t, θ(∂/∂t) + ∂/∂θ is
adapted to a different addition law on R

1|1 than ∂/∂t + ∂/∂θ is. In this way, we will see that
the introduction of a covariant superderivative amounts to a change in the Lie supergroup
structure of the space of integrating parameters whithout changing the local expression of
the solutions of differential equations.

Suppose that we want to build a supersymmetric action functional on our super-
manifold (M,Ω(M)) (or any other supermanifold, for this purpose). Then, we look for an
expression of the form

S[ω(t, θ)] =
∫

R1|1
dtdθL(ω(t, θ)), (7.1)

where the integration over t is the usual integration over R, and the integration over
θ is the Berezin integration (defined in such a way that

∫
dθω(t, θ) = ∂/∂θ(ω(t, θ))).

The superlagrangian L must be a function of ω(t, θ) and its “covariant superderivatives”
Dω(t, θ), where D is an operator to be determined. For example, a simple nontrivial choice
(called the “free superlagrangian”) is given by

L(ω(t, θ)) = Dω(t, θ) ·D(Dω(t, θ)). (7.2)
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From this LagrangianL and the action S[ω(t, θ)]wewould like to extract the Euler-Lagrange
superequations. But, in order to do so, we need to know how to compute the variations
induced in ω, δω(t, θ), and its derivatives, δDω(t, θ). Now, any transformation of the form

t �−→ t − fε(t, θ),

θ �−→ θ − gε(t, θ),
(7.3)

where ε is an anticommuting parameter, has associated a generator (or supercharge) Q such
that the induced variation on any α(t, θ) ∈ R

1|1 is given by

δα(t, θ) = ε ·Qα(t, θ), (7.4)

so, in particular,

δDω(t, θ) = ε ·Q(Dω(t, θ)). (7.5)

Now, if we choose the covariant superderivativeD as an odd element in the centralizer of the
algebra generated by Q (i.e., if we choose D ∈ Z〈Q〉), we will have

0 = �Q,D� = Q ◦D − (−1)1·1D ◦Q = QD +DQ, (7.6)

so (note that ε, Q and D all have odd degree)

δDω(t, θ) = ε ·Q(Dω(t, θ)) = −ε ·D(Qω(t, θ)) = D(ε ·Qω(t, θ)) = D(δω(t, θ)), (7.7)

that is, the variation of the derivatives, δDω, can be computed as the derivatives of the
variation δDω = Dδω, a condition which directly leads to the usual Euler-Lagrange
equations.

Returning now to (7.3), we take them to be the (left) supertranslations of the form

t �−→ t + ε · θ,
θ �−→ θ − ε,

(7.8)

(here θ, ε ∈ Ω1(R) so they are of the form θ = fdt and ε = gdt for some real functions
f, g. The product ε · θ is then to be understood as gf). It is usual in physics to consider
the anticommuting parameters ε as complex spinors, and the translations in t of the form
t + iε · θ, or even the translations in the whole 4-vector xμ including a gamma matrix as
xμ+ iεγμθ. When one considers (real)Majorana spinors or no spinors at all (as in our setting),
the formulae reduce to our expressions (see [10, Chapter 14]). These will induce a variation
in ω(t, θ) determined by

ω(t + ε · θ, θ − ε) = ω(t, θ) + δω(t, θ), (7.9)
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and it is immediate that δω(t, θ) = ε · Qω(t, θ), where Q is the generator of these
supertranslations, the odd vector field given by

Q = θ
∂

∂t
− ∂

∂θ
. (7.10)

This odd vector field, taken together with the even operatorH = ∂/∂t (which is the generator
of classical time translations) close the simplest Lie superalgebra, as it is easy to check that

�Q,H� = 0 = �H,H�,

�Q,Q� = −2H.
(7.11)

Now, as stated before, we must look for a supervector field D with odd degree such that D
lies in the centralizer ofQ = θ(∂/∂t)−∂/∂θ. Indeed, asH is even,D must also commute with
it, so actually we are looking for an element in the center of the superalgebra 〈Q,H〉. This
superalgebra is very simple and well known. In fact, it can be seen that its center is generated
by the element

D1 = θ
∂

∂t
+

∂

∂θ
(7.12)

(note the sign difference withQ). This is the covariant superderivative used in physics. What
is its group theoretical meaning? It results that among the several Lie supergroup structures
R

1|1 admits, there is one and just one such that the generators of left invariant supervector
fields are precisely

D0 =
∂

∂t
, D1 = θ

∂

∂t
+

∂

∂θ
. (7.13)

This supergroup structure is different from the structure associated to the integrator ∂/∂t +
∂/∂θ, with homogeneous components D0 = ∂/∂t and D1 = ∂/∂θ, that we have considered
in previous sections. For ∂/∂t + ∂/∂θ, an integration gives the multiplication rule m (for
elements (t1, θ1) and (t2, θ2) in R

1|1)

m((t1, θ1), (t2, θ2)) = (t1 + t2, θ1 + θ2), (7.14)

which correspond to Type 1 product in Table 2, while for the choice of the basis of left
invariant supervector fields D0 = ∂/∂t and D1 = θ(∂/∂t) + ∂/∂θ we get a different (and
nonequivalent) rule μ, which corresponds to Type 2 in the table:

μ((t1, θ1), (t2, θ2)) = (t1 + t2 + θ1θ2, θ1 + θ2). (7.15)

Thus, we can say that the introduction of the covariant superderivative D = θ(∂/∂t) + ∂/∂θ
amounts to a change in the structure of Lie supergroup of R

1|1 from the one given by Type
1 multiplication m, whose basis of homogeneous left invariant vector fields is {∂/∂t, ∂/∂θ},
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to the one determined by μ, Type 2, with basis of homogeneous left invariant vector fields
{∂/∂t, θ(∂/∂t) + ∂/∂θ}.

What is the effect of this change with respect to the problem of integrating differential
equations? If we shift from the Lie supergroup structure (R1|1, m) to (R1|1, μ), we should be
able to integrate any differential equation with D0 = ∂/∂t and D1 = θ(∂/∂t) + ∂/∂θ, and we
know that this requires that these homogeneous vector fields close a Lie superalgebra, which
they do:

�D0, D0� = 0 = �D1, D0�

�D1, D1� = −2D0.
(7.16)

(Note, by the way, that this is the same Lie superalgebra determined by the supercharge
Q and the even Hamiltonian H). But, moreover, regarding the integration of differential
equations, this shift has no consequences because of the evaluation morphism: as this
morphism implies to take modulo θ in the equations, it is equivalent to consider the
integrating field ∂/∂t + ∂/∂θ or any other field of the form ∂/∂t + ∂/∂θ + θ · F. And the
difference between the integrating fields given by D0 + D1 = ∂/∂t + ∂/∂θ and D0 + D1 =
∂/∂t + θ(∂/∂t) + ∂/∂θ is precisely a term of this form with F = ∂/∂t.

8. Covariant Superderivatives in R
1|n

We want to extend our previous analysis to the case of N-supersymmetry, that is, the case of
several fermionic charges Qi (with 1 ≤ n). This leads us to consider the “supertime space”
R

1|n.
Proceeding as in the case of R

1|1, we characterize R
1|n as the base manifold R with a

sheaf of superfunctions A, which this time can be described as follows. Over each open set
I ⊂ R, AI is the C∞(I)-module with a set of n generators θ1,...,θn, subject to the product rule
(which is extended by linearity):

θiθj + θjθi = 0 =
�
θi, θj

�
. (8.1)

So, in particular, (θi)
2 = 0 for any 1 ≤ i ≤ n. However,

θi · · · θn /= 0. (8.2)

We will consider, for simplicity, the case of globally defined superfunctions, that is, I =
R. A brief notation for this is then AR = C∞(R)[θi, . . . , θn]. We can think about these
superfunctions as elements of the form

α =
∑

j

∑

ij

αi1···ij θi1 · · · θij , (8.3)

with the sum over j running from 0 to n and the sum over ij running from 1 to nwith 1 ≤ i1 ≤
· · · ≤ ij ≤ n. Each coefficient αi1···ij is an element of C∞(R).
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Let D be a derivation of AR1|n , that is, D ∈ Der (AR1|n). We can decompose it into
homogeneous even and odd parts, D = D0 + D1 with Di ∈ (DerAR1|n)i, i = 0, 1, and as
derivations are particular cases of endomorphisms of a superalgebra, we can consider the Lie
superalgebra structure given by the restriction of the graded commutator of endomorphisms:

�D1, D2� = D1 ◦D2 − (−1)|D1||D2|D2 ◦D1. (8.4)

It is easy to verify that {∂/∂t, θj(∂/∂θi)} ⊂ (DerAR1|n)0 whereas {θi(∂/∂t), ∂/∂θi} ⊂
(DerAR1|n)1. Moreover,

�

θj
∂

∂θi
, θk

∂

∂t

�

= δk
i θj

∂

∂t
,

�

θj
∂

∂θi
,

∂

∂θk

�

= −δj

k

∂

∂θi
,

�

θj
∂

∂t
,
∂

∂θi

�

= δ
j

i

∂

∂t
,

(8.5)

are the nontrivial Lie superbrackets. We can define a Lie subsuperalgebra of DerAR1|n taking
the R-expand of {∂/∂t, θj(∂/∂θi), θi(∂/∂t), ∂/∂θi}, and it is straightforward to verify that the
result is isomorphic to gl(R1|n) (see [34] for more on gl(V ) for V a vector superspace). That is,
we will restrict ourselves to the linear expressions in {∂/∂t, θj(∂/∂θi), θi(∂/∂t), ∂/∂θi} with
real constant coefficients. We will consider in the following this Lie superalgebra gl(R1|n).

Following the ideas expressed in previous sections, we want to consider now the left
supertranslations Li(1 ≤ i ≤ n) of the form

t �−→ t + ε · θi,
θi �−→ θi − ε,

θj �−→ θj
(
i /= j

)
.

(8.6)

And, as before, we get that the generators of these supertranslations are given by the odd
vector fields:

Qi = θi
∂

∂t
− ∂

θi
, 1 ≤ i ≤ n. (8.7)

It is easy to verify that takingH = ∂/∂t as the even generator, they close in a Lie superalgebra
with dimension (1, n). The nontrivial relations are

�Qi,Qi� = −2H, 1 ≤ i ≤ n. (8.8)

The Lie superalgebra these supercharges generate is a subalgebra of gl(R1|n):

〈H,Qi〉1≤i≤n ⊂ gl
(
R

1|n
)

(8.9)
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Now, let D ∈ (gl(R1|n))1, so,

D =
n∑

k=1

ak θk
∂

∂t
+ bk

∂

θk
. (8.10)

We are looking for D odd such that

�Qi,D� = 0, 1 ≤ i ≤ n (8.11)

but now,

�Qi,D� =

�

θi
∂

∂t
− ∂

θi
,

n∑

k=1

akθk
∂

∂t
+ bk

∂

θk

	

=
n∑

k=1

(
ak

�

θi
∂

∂t
, θk

∂

∂t

�

+ bk

�

θi
∂

∂t
,

∂

∂θk

�

−ak

�
∂

∂θi
, θk

∂

∂t

�

− bk

�
∂

∂θi
,

∂

∂θk

�)

=
n∑

k=1

δi
k (bk − ak)

∂

∂t

= (bi − ai)
∂

∂t
.

(8.12)

So we get that �Qi,D� = 0 if and only if ai = bi; then, the centralizer of 〈H,Qi〉 in gl(R1|n) is
what we expected:

(
Zgl(R1|n)〈H,Qi〉

)

1
=
〈
θi

∂

∂t
+

∂

θi

〉

1≤i≤n
. (8.13)

In fact, it is easy to prove that

(
Zgl(R1|n)〈H,Qi〉

)

0
= 〈H〉. (8.14)

Moreover, if we denote by Di = θi(∂/∂t) + ∂/θi, then

〈H,Qi〉 � 〈H,Di〉, (8.15)

as Lie superalgebras.

9. Conclusions

The previous exposition can raise an important question: what is themeaning of the examples
we have presented? Are they general enough? The answer to that question is yes. First,
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let us note that superspaces as used in physics can be seen as images of graded manifolds
(in the sense of Berezin-Kostant-Leites) under the functor of points (see [35].) Although
this correspondence is not functorial, it is enough to describe these superspaces within our
framework (see [31].) Second, there is a theorem (due to M. Batchelor and K. Gawedzki, see
[36, 37]) stating that any real supermanifold M can be considered in the form (M,Γ(

∧
E))

for some vector bundle π : E → M, and this is equivalent to giving a graded connection on
M (see [38], note that this correspondence is not canonical). The case we have just analyzed
corresponds to the choice E = T ∗M (the cotangent bundle), but the changes needed to deal
with the general case are mainly notational in character.

The moral is that, from a mathematical point of view, to integrate an arbitrary vector
field on a supermanifold we need to work with a parameter space more general than R.
Our examples above tell us that in order to integrate a degree-1 vector field, such as d
on (M,Ω(M)), we need an anticommuting parameter, and that, in general, a pair (t, θ)
with t commuting and θ anticommuting will suffice to deal with an arbitrary vector field.
The supermanifold of which these pairs are elements is the graded generalization (or
supersymmetrization) of R, and is denoted by R

1|1. So, from a physical point of view we can
say that in order to solve a dynamical theory on a supermanifold (one given by an arbitrary
dynamical vector field, e.g., in the Hamiltonian setting), we must use the notion of supertime
understood as an integrating parameter in R

1|1.
However, the choice of this integrating parameter is flexible. If one is interested just in

the solution to some differential equation, then this choice is irrelevant as long as the different
generators of supertime differ by a term linear in θ. But if wewish to construct some dynamics
through a supersymmetric LagrangianL, then wemust pay some attention to the underlying
group structure on R

1|1, as this structure is intimately tied to the covariant superderivatives
that enter in the definiton of L.
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