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Abstract
It is shown how to study higher order variational problems in graded fiber bundles
through the Poincaré-Cartan form.
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1. Introduction

These notes deal with the generalization to supermanifolds of the classical
approach to dynamical systems due to E. Cartan, by using the language of
the calculus of variations on jet bundles. A basic object in this formalism is
the so-called Poincaré−Cartan form, which can be defined in the non-graded
setting through different constructions. Here, we simply recall that if we have
a submersion p : M × R → R with M an m−dimensional C∞ manifold, on
the tangent bundle we can construct a (1, 1) tensor field on J1(p) (the space
of 1−jets of sections of p) through the formula J = J − ∆ ⊗ dt (with the
canonical almost tangent structure J and the Liouville vector field ∆) and,
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given a Lagrangian L ∈ C∞(J1(p)), the Poincaré−Cartan 1−form also on
J1(p):

ΘL = LJL + λL, (1)

λL = L · p∗(dt) being the Lagrangian density associated to L, usually written
simply as λL = L · dt.

From this point on, a number of results can be deduced in a straightfor-
ward manner, such as the Euler−Lagrange equations or the Noether theorems.
Our aim is to study first order Berezinian variational problems for fields on
supermanifolds, but with the techniques of the graded calculus of variations,
as these are well developed, see [1]. There exists a tool for doing this, known
as the Comparison Theorem, but there is a price we must pay: the theorem
guarantees that a first order Berezinian variational problem is equivalent (in a
sense to be made precise later) to a graded variational problem, but of higher
order.

2. Higher order Poincaré−Cartan superforms

For notations and basic results on supermanifolds, see [2], [5] and references
therein.

We will work with a graded submersion p : (N,B) → (M,A), with M
an oriented manifold with volume form η = dx̃1 ∧ ... ∧ dx̃m = dmx̃. Negative
indices denote odd coordinates, and Greek ones sum over even and odd indices.
Often, use will be made of the notation ηG = dGx1 ∧ ... ∧ dGxm = dG

mx and
dG

mx̂i will mean “dG
mx with the factor dGxi (with i ∈ {1, ...,m}) omitted”.

Also, we will use the notation (Jk
G(p),AJk

G(p)) (or sometimes (Jk
G,AJk

G
) if p

is understood) for the graded bundle of k−jets over p. For definitions and
details, see [1]. Fibered coordinates are chosen in such a way that, along a
section σ of p, jk(σ)∗ (yµ

α) = ∂
∂xα σ∗ (yµ) . Finally, L will denote an element of

AJ1
G(p), i.e, L = L(xα, yµ, yµ

α).
Now let ξL be a first order Berezinian density, which once a volume form on

the base manifold η is chosen, can be written as ξ = [dGx1∧ ...∧dGxm⊗ d
dx−1 ◦

... ◦ d
dx−n ]L. Our intention is to study the Cartan formalism for variational

problems, and in this formalism a central object is the so-called Cartan form,
denoted ΘL

0 and locally given by

ΘL
0 =

m∑
i=1

r∑
µ=−s

(−1)m+i[dG
mx̂i ∧ (dGyµ −

m∑
α=−n

dGxα · yµ
α)]

∂L

∂yµ
i

+ dG
mx · L.
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The graded analog of the vertical endomorphism of the tangent bundle
used in classical mechanics is,

J1 :=
m∑

i=1

r∑
β=−s

(−1)m+idG
mx̂i ∧ dGyµ ⊗ ∂

∂yµ
i

,

also, for each α ∈ {−n, ...,−1, 1, ...,m}, i ∈ {1, ...,m}, the graded analog of
the Liouville vector field reads,

∆αi =
r∑

β=−s

(−1)m+iyµ
α

∂

∂yµ
i

;

and finally (we omit the summation symbols from now on, by using Einstein’s
convention), let us defineJ1 := J1 − dG

mx̂i ∧ dGxα ⊗∆αi.
If we evaluate LG

J1
(L), we obtain: LG

J1
(L) = ΘL

0 − dG
mx · L, so that

ΘL
0 = LG

J1
(L) + ηG · L. (2)

Formally, this expression is the same as (1), but now ηG appears and J1 also
contains a factor of this kind. To have ΘL

0 intrinsically defined, it remains to
prove that J1 is also intrinsically defined. Again, J1 is the graded analogue
of the (1,m)−tensor field Sη that appears in the non-graded case, see [7]
pgs 156 − 158. We will study the intrinsic construction of these objects, but
the generalization is not straightforward, as pointwise constructions are not
applicable in a graded context.

The geometrical setting needed to make these ideas precise, rests upon the
following results. Let (N,B)

p→ (M,A) be a graded submersion. Consider the
cotangent supervector bundle on (M,A), ST ∗(M,A), and its pull-back to a
supervector bundle on (N,B), p∗ST ∗(M,A). Also, let V(p) ⊂ ST (N,B) be the
vertical subspace of p, which is another supervector bundle on (N,B). Thus,
we have the product supervector bundle p∗ST ∗(M,A)⊗V(p) over (N,B), with
a projection which we will denote π, and we can construct the diagram

J1
G(p)
↓ p1,0

p∗ST ∗(M,A)⊗ V(p) π−→ J0
G(p) ' (N,B)

p−→ (M,A).

Now, consider the submersion pk−1 : Jk−1
G (p) → (M,A) playing the rôle

of p. Then, if {xα, yµ, zµ
I }1≤|I|≤k−1 is a system of coordinates for Jk−1

G (p),
{xα, yµ, zµ

I , wµ
K} (with 1 ≤ |K| ≤ k, 1 ≤ |I| ≤ k−1 where the usual notation for

multi-indices is employed) is a system for J1
G(pk−1) (note that, along sections,
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zµ
I = yµ

I and wµ
I+α = zµ

αI), and we have a family of graded m−forms with
values on V((pk−1,1)1,0) whose local expressions are

Jk = (−1)m−1ι ∂

∂xi
ηG ∧

(
θyµ ⊗ ∂

∂yµ
i

+ θzµ
I ⊗ ∂

∂zµ
iI

+ θwµ
K ⊗ ∂

∂wµ
iK

)
(note that the sum ι ∂

∂xi
ηG ∧ θwµ

K ⊗ ∂
∂wµ

iK
runs only up to |K| = k − 1), where

θzµ
I = dGzµ

I −dGxα ·zµ
αI and so on are the contact forms. The following theorem

tells us that this construction can be made intrinsically.

Theorem 1 ([5]) On Jk
G(p) (for any k) there is defined a canonical graded

(Poincaré-Cartan) m−form with values on V((pk)1,0) ⊂ V((pk−1,1)1,0), which
we will denote Jk, and whose local expression is (writing collectively θµ

I instead
of θzµ

I and θwµ
K )

Jk = (−1)m−1ι ∂

∂xi
ηG ∧ θµ

I ⊗
∂

∂yµ
I+i

,

where 0 ≤ |I| ≤ k − 1, with the usual convention θµ
I = θµ when |I| = 0.

Definition 1 Generalizing (2), we define, for any L ∈ AJk
G
, the graded m−form

Θ̃L
k = LG

Jk
(L) + ηG · L. (3)

These are the Poincaré−Cartan forms for higher order graded variational
problems. In the next Section we will see how to use them in order to solve
first order Berezinian variational problems.

3. The Comparison Theorem and Euler−Lagrange
equations

Roughly speaking, the Comparison Theorem states the following (see [3]):
given ξL =

[
dGx1 ∧ ... ∧ dGxm ⊗ d

dx−1 ◦ · · · ◦ d
dx−n

]
· L (with L ∈ AJ1

G
) a first

order Berezinian density, the set of extremals for the variational problem it
determines is in a bijective correspondence with the set of extremals for the
variational problem associated to the (n+1)−th order graded density −λξL

=
dGx1 ∧ ... ∧ dGxm · dnL

dx−1···dx−n (where n is the odd dimension of (M,A)).
If we compare (2) and (3), we see that there are two a priori independent

ways for getting the Poincaré−Cartan form for the densityλξL
. From (2), we

could construct ΘL
0 = LG

J1
(L) + ηG · L and then compute

ΘL
n+1 = LG

d
dx−1

◦ · · · ◦ LG
d

dx−n
ΘL

0 , (4)



222 Calculus of variations and field theory in graded fiber bundles

or we could just apply the definition (3) to dnL
dx−1···dx−n ∈ AJn+1

G
to get directly

(let us denote Θ̃
dnL

dx−1···dx−n

k simply as Θ̃L
k for obvious reasons)

Θ̃L
n+1 = LG

Jn+1
(

dnL

dx−1 · · · dx−n
) + ηG · dnL

dx−1 · · · dx−n
.

One of the main results in [5] is that these ways coincide.

Theorem 2 ([5]) Let ξL be a first order Berezinian density, and let λξL
=

dGx1 ∧ ... ∧ dGxm dnL
dx−1...dx−n . Let ΘL

0 be the graded Poincaré-Cartan form
corresponding to −λξL

; then (with the notation as above),

ΘL
n+1 = Θ̃L

n+1.

Theorem 3 ([5]) A local section s of (N,B)
p→ (M,A) is a critical section

for the Berezinian density ξL = [dGx1 ∧ ... ∧ dGxm ⊗ d
dx−1 ◦ ... ◦ d

dx−n ] · L with
L ∈ AJ1

G
, if and only if it verifies

(jn+1s)∗
(
ιXdGΘL

n+1

)
= 0 (5)

for every vector field X on Jn+1
G (p), vertical over (M,A).

Of course, the local version of (5) are the Euler−Lagrange equations:

(jn+1s)∗
(

∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−j

∂L

∂yµ
−j

)
= 0.

4. Noether Theorem and supersymmetries

As in the classical (non-graded case), we can study the invariance of variational
densities, and the associated Noether−type theorems..

Definition 2 A p−projectable vector field X on (N,B) is said to be an in-
finitesimal supersymmetry of the Berezinian density ξL = [dGx1∧ ...∧dGxm⊗

d
dx−1 ◦ ... ◦ d

dx−n ] · L with L ∈ AJ1
G
, if LG

X(n+1)
ξL = 0,where X(n+1) is the

(n + 1)−jet extension of X by contact graded infinitesimal transformations
and LG is the graded Lie derivative.

Definition 3 A graded vector field X ′ on (M,A) is said to have a graded
divergence with respect to a graded volume m-form ηG on (M,A) if there exists
a function f ∈ A such that LG

X′ηG = ηGf.In this case, we put f = divG(X ′). A
graded vector field X on (N,B) is said to have divergence if it is p−projectable
and if its projection X ′ has divergence.
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Definition 4 Let X ′ be a graded vector field on (M,A). Given a Berezinian
density ξ on (M,A), a function g ∈ A exists such that LG

X′ [ξ] = (−1)|X
′||ξ|[ξ]·g;

we put g = divB(X ′) and call it the Berezinian divergence of X ′..

Theorem 4 ([5]) Assume X is an infinitesimal supersymmetry of the Berezinian
density ξL = [dGx1∧ ...∧dGxm⊗ d

dx−1 ◦ ... ◦ d
dx−n ] ·L (with L ∈ AJ1

G
) such that

1. The projection X ′ of X onto (M,A) has divergence with respect to dGx1∧
... ∧ dGxm,

2. divB(X ′) = divG(X ′).

Then, for every critical section s of ξL we have

dG[(jn+1s)∗(ιX(n+1)
ΘL)] = 0.

The superfunctions ιX(n+1)
ΘL appearing in the statement, are called Noether

supercurrents. Analogously, the graded vector fields X satisfying the condi-
tions of the Theorem (and, in general, those leading to Noether supercurrents,
note that these conditions are sufficient, not necessary) are called Noether
supersymmetries.

Corollary 1 ([5]) Assume X is a p−vertical graded vector field which also
is an infinitesimal supersymmetry of the Berezinian density ξL = [dGx1 ∧ ...∧
dGxm ⊗ d

dx−1 ◦ ... ◦ d
dx−n ]L (with L ∈ AJ1

G
). Then, for every critical section s

of ξL we have
dG[(jn+1s)∗(ιX(n+1)

ΘL)] = 0.

5. An example

Consider (M,C∞(M)). In this supermanifold, there are no negative index
supercoordinates so we will denote them by {xi}n=dim M

i=1 . A classical regular
Lagrangian L ∈ C∞(J1(π : R × M → M)) can be lifted to J1(p : R1|1 ×
(M,A) → R1|1) and then we can apply all the results of the previous sections.
In particular, we can determine a space denoted (S,AS), which will be called
the space of solutions, in which dΘL is a symplectic superform; this space
of solutions is graded isomorphic to (TM,Ω(TM)) endowed with the Koszul-
Schouten form ΞKS (Theorem 14.5 in [4]). If in TM we take the classical
canonical coordinates given by L, {xi, pi = ∂L

∂xi }n
i=1, then {xi, pi, x−i, p−i}n

i=1

is a supercoordinate system on (TM,Ω(TM)) and the Koszul-Schouten form
is

ΞKS = dG x−i dG pi + dG xi dG p−i.
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Moreover, the superhamiltonian vector field corresponding to the super-
function EL = LG

d
ds

(L − ∆L) (the superenergy associated to the Lagrangian,

here s is the odd coordinate in R1|1) is

XEL
= −LXH

− d,

where H is the classical Hamiltonian associated to L (i.e, H = xi
tp

i − L)
and XH is the corresponding Hamiltonian vector field given by the classical
symplectic structure induced by L.

In this context, we can prove the following result:

Theorem 5 ([6]) The space of solutions of the graded variational problem
determined by a classical Lagrangian L ∈ C∞(J1(π : M × R → R)), has the
structure of a Batalin-Vilkovisky algebra, and the superenergy S = EL is a
solution of the associated Master Equation.
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