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Abstract. We show that given an odd metric G on a supermanifold {M,.a/) and its associated 
Laplacian A, it is possible to interpret harmonic superfunctions (i.e., those / e ^ such that A/ = 0) 
as solutions to a variational problem describing a supersymmetric sigma model. 
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1. INTRODUCTION 

In Physics, by a non linear sigma model it is understood the study of a field theory 
described by the so called Polyakov action (see [1, 2, 10]), which reads 

J=\jd"'x^\g^^hijd^^%^i. (1) 

This expression assumes that we have a mapping (j) : M ^ N between manifolds M, 
called the source (m—dimensional, endowed with coordinates {x"}™^jand a metric g = 
8nv{x)), and Â , called the target («—dimensional, endowed with coordinates {y'l^^^and 
a metric h = hij [y)). As an additional notation, ^' = y' o ̂  : M ^ M is a set of components 
for ^, 1̂1 = I det^l and g^^ are the components of the inverse metric g^^. This model is 
usually applied when m = 2, that is, the manifold M is a surface. In this case, the surface 
is viewed as the result of the time evolution of a 1—dimensional object (a string) and T 
is interpreted as the tension of the string. 

It is customary to write 

and to call it the "induced" metric on M (actually, this is just the pullback (j)*h). It 
is particularly interesting, for physical reasons, to consider the situation in which the 
metrics available on M (the original g and the induced y) are conformal, that is, there 
exists a function / e (^{M) with f{x) > 0 for all x G M such that 

8nv{x)=f{x)-rnv{x). (2) 

In this case, the Polyakov action reduces to 

^d"'x^\g^''r^iv= fd"'x^\f'^. 
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The case m = 2 is very special, for on any surface all the metrics are conformally related, 
so condition (2) is always satisfied. Hence, the action for a bidimensional (source) sigma 
model is simply 

S= fdh^l 

which is known in Physics as the Nambu-Goto action for the bosonic string (in Mathe
matics, it is just the Riemannian area functional). 

So, from a physicist's point of view, the interest of studying non linear sigma models 
as (1) is due to the fact that these encode the field equations of fields defined on 
extended objects that generahze (bosonic) strings (regarding terminology, we should 
say that when we speak about bosonic strings it is understood that the target Â  is a 
(pseudo)Riemannian space. For fermionic strings or superstrings, N isa supermanifold). 

A question of the upmost importance in Physics, is that of the invariance properties 
of a model. In our case, it is easy to see that non linear sigma models (as described by 
the Polyakov action) have the following features: 

1. Invariance under the diffeomorphism groups Siiff{M) and Siiff{N). 
2. Invariance under Iso{M), the group of isometrics of M (a particular case of (1)). 
3. If M = 2, invariance under Wey{N,h), the conformal transformations of {N,h). 
4. If (Â , h) is taken to be the Minkowski spacetime, invariance under the Poincare 

group .^. 

All these properties become apparent if we write Polyakov's action in an intrinsic man
ner. It is easy to see that (1) is just the local expression of what in differential geometry 
is called the energy of a map (j) : M ^ N between (pseudo)Riemannian manifolds (see 
[4, 3, 11]). The energy functional is 

E = l [ Tr{g-\rh))dvolg. (3) 

The classical interpretation of this functional is the following. If we have a smooth 
map (j> : {M,g) -^ {N,h) between Riemannian manifolds and we imagine them made 
of rubber and marble, respectively, then applying M over Â  requires a certain amount of 
energy (work), which is stored in the tension of the surface. 

2. HARMONIC FUNCTIONS AND LAPLACIANS 

Critical points of sigma models (1) are the same as critical points of the energy functional 
(3). They only differ in the name they receive from physicists and mathematicians, the 
latter preferring the name harmonic mappings for these critical points. 

Harmonic mappings encompass a lot of situations of geometric interest, we stress the 
following: 

1. If {M,g) = (R,geu), the Euclidean line, harmonic mappings (j> '.R^ {N,h) are the 
geodesies of {N,h). 

2. If {N,h) = (R,geu), then harmonic mappings (j> : {M,g) ^ M are the harmonic 
functions on {N,h). 
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There are other cases: Minimal immersions, totally geodesic maps, holomorphic maps 
between Kahler manifolds, etc (see [9], Sect. 3.4.) But let us focus our attention in the 
case (2), that of harmonic functions. 

What are the extremals of (3) when {N,h) = (M,^e«)?Howdo we know that these are 
precisely the harmonic functions? In a coordinate system, the Euler-Lagrange equations 
for (3) are 

A<j> = - 1 = d^{y^d^g^''dy<j>) = 0, (4) 

where A is the classical Laplace operator defined by g (see [11, 9]). This can also be 
written as 

A^ = (divograd)^ = 0, (5) 

and our goal is precisely to study the translation of this setting to the context of super-
manifolds. That is: we want to write down the solutions of a variational characterization 
of supersigma models as harmonic superfunctions. 

Let us make a side comment. There is another way of expressing these equations, as 

A(p = {5d + d5)(p = 0, 

where 5 = — * rf* is the codifferential associated to g through the Hodge star *. This 
equation is the starting point of Hodge theory, but it presents a very difficult problem 
of interpretation in the context of supermanifolds as for these there is no top on coho-
mology, so we can not define in a direct way Hodge duahty and the associated calculus. 
This is the reason for choosing (5) as the intrinsic expression for the Laplacian. 

Another comment refers to the kind of Riemannian metrics we will use (odd met
rics). The even and odd cases have quite different behaviours, and our choice here is 
determined by the fact that we will deal with superfunctions, that is, morphisms of su
permanifolds where the target is M̂ l ̂  For this supermanifold, there exist no (non degen
erate) even metrics, as this requires an even-dimensional base manifold (see [7]). Thus, 
as morphisms of supermanifolds must be even, we are forced to work with odd metrics 
in the source manifold (cf. Equation (6) below). 

3. SUPERSIGMA MODELS AND HARMONIC 
SUPERFUNCTIONS 

There is a problem that we must overcome to achieve our goal: For a supermanifold, 
a single natural definition of integral does not exist. There are two constructions, the 
Berezin integral and the graded integral, very different in nature. The Berezin integral 
is the one is used by physicists, while the graded integral has better mathematical 
properties. Berezin's integral does not really integrate forms on supermanifolds, but 
sections of the so called Berezinian module. On the other hand, the graded integral 
has an associated calculus of variations, actually integrates superforms... But it does 
not provide the equations physicists want. In order to surpass these difficulties, we 
make use of the Comparison Theorem (see [6, 5]) which relates solutions of a given 
Berezinian variational problem with the corresponding ones of a certain associated 
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graded variational problem of higher order. In [8], we have applied this technique to 
the case of the Polyakov functional (energy functional) for supermanifolds ( M , ^ ) and 
{N,^) with a morphism <j) : {M,£/) -^ {N,^) when {N,^) = M^l\ that is, we have 
studied the variational characterization of harmonic superfunctions (or (1|1)—linear 
supersigma models). 

Given the morphism (j) : {M,^/) -^ {N,M) and odd supermetrics G, on ( M , ^ ) , and 
H, on (Â , ^ ) , we define a supersigma model by the action functional 

/ = / C\{G-\r'H)), (6) 

where <̂G is the canonical section of the Berezinian module given by the Berezinian 
Riemannian section associated to G and /gg^ denotes the Berezin integral. Notice that 
we do not use the supertrace, but the common contraction of supertensors (for H 
the canonical odd supermetric on M l̂̂  the supertrace would give an identically zero 
expression). With the aid of the Comparison Theorem, we can study the extremals of 
this functional through an associated graded variational problem for which we have a 
calculus of variations available. Indeed, the computations show that these extremals are 
the same obtained in Proposition 3 below. 

In the following we will assume that (M, £/) is a split supermanifold, that is, ^ = 
T{f\E) where £ ^ M is a vector bundle over M. We write {x\x^^} {\<i<m = dimM, 
^< j <n) for a supercoordinate system on (M, £/). 

We can summarize our results about the problem of relating extremals of the Polyakov 
(or energy) functional for supermanifolds and harmonic superfunctions by saying that 
the main relations and properties of the classical case also holds for supermanifolds: 

1. We can define, for superfunctions / G ^ = T{/\E), a notion of gradient with 
respect to an odd supermetric G on (M, ^ ) : 

Proposition 1: For a superfunction f, the following local expression holds true: 

grad, / = / ' - '^^ ' '-^^'f ' dx i dt dx'^ dx ' ' 

g''j being the components of the inverse metric g^^ ofg on M. 
2. For a vector field on (M, r{/\E)) (that is, a derivation of T{/\E)), such as gradg/, 

we can define and compute its Berezinian divergence with respect to the Rieman
nian Berezinian section <̂ G, denoted div^^: 

Proposition 2: For any D G DerT{l\E), we have 

div^,(D) = ( - l ) l^ l l««l^^( |G | .D«) , 

where \B,Q\ is the degree of the Riemannian Berezinian section, \G\ is the Berezin 
determinant ofG, and a = {/, —j} denotes even and odd indices collectively. 

3. We can define the superLaplacian on superfunctions as A = div^^ ogradg and study 
its kernel: 
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Proposition 3: For any superfunction f G T{I\E), the equation A/ = 0 is equiva
lent to 

4. And, finally, we can relate these equations to the ones resulting from the computa
tion of the extremals of (6): 

Theorem: The harmonic superfunctions (the f G r{/\E) such that A/ = 0) are 
precisely the solutions of the Euler-Lagrange equations of the {l\l)—linear super-
symmetric sigma model. 
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