
Modelling the landing of a plane in a calculus lab

Antonio Morante and José A. Vallejo
Facultad de Ciencias, Universidad Autónoma de San Luis Potośı

Lat. Av. Salvador Nava s/n, CP 78290
San Luis Potośı (SLP), México

August 16, 2011

Abstract

We exhibit a simple model of a plane landing that involves only
basic concepts of differential calculus, so it is suitable for a first year
calculus lab. We use the computer algebra system Maxima and the
interactive geometry software GeoGebra to do the computations and
graphics.
Keywords: Mathematical modelling; calculus labs; GeoGebra; CAS
Maxima.

1 Introduction

Usually the problems posed in freshman calculus courses are just formal in
character and, therefore, not quite exciting. Students are not satisfied when
we say that mathematics can be used in different fields of knowledge, they
want to see math applied to real world situations!.
Obviously, the problem is that most of real mathematical applications need
the study of more advanced subjects than the ones offered at freshman level,
but with a little bit of imagination is possible to adapt complex real problems
to tractable case studies requiring a minimum of mathematical formalism.
An example of this approach is Richard Barshinger’s paper How not to land
at Lake Tahoe (American Mathematical Monthly 99 n5 (1992) 453-455), of
which we present an adaptation using Maxima and GeoGebra. The choice
of this couple is dictated by two main reasons: their power and easiness of
use, and the fact that they are free software, so the students can work at
home with the same programs with which they learn at the classroom, at
no cost. We include a brief appendix on the basic usage of both programs,
to make the lab self-contained.

1

Before June 1965, when autolanding was first used in a commercial flight,
there were several accidents of landing aircrafts, like that of Paradise Air-
lines Flight 901A, where a Constellation crashed with Genoa peak on ap-
proach to Lake Tahoe airport (see, for example, http://aviation-safety.
net/database/record.php?id=19640301-1). Nowadays, even with good
visual conditions, most of the medium/large range airliners are able to land
by means of the so called instrument landing systems (or ILS for short).
There is a well defined protocol to decide when to use these ILS, indeed,
landings are classified taking into account several conditions related to vis-
ibility (see http://www.kel.com/aero/pamila/category/three/). In our
classes (first calculus courses for mathematicians, physicists and electri-
cal engineers), before doing this lab we suggest the students to look in
the Internet for information regarding CAT III landings, which are the
most difficult ones. Usually, they find the webpages we are referring to
in this paper by themselves, and also several videos of actual landings
taken by professional pilots (a particularly shocking one can be found here:
http://www.youtube.com/watch?v=Fe pEK kRVw). Then, it is easy to mo-
tivate them by saying that in the next calculus lab we will see how the
automated system can compute the trajectory of best approach!. We also
promise the students to explain the landing process and the meaning of the
expressions they can hear in those videos, to make things more interesting1.

As mentioned, all the computations in this lab are done with the aid
of Maxima and Geogebra. This combination of research in the Internet,
getting videos of real situations, and doing computations with software, has
proven to be very stimulating for our students. We sincerely believe that
inserting this kind of projects into the curriculum contributes to maintain
the student’s interest in calculus courses.

2 Background

Suppose we are modelling the landing of a plane. We would like to do
this in such a way that, eventually, the model could be implemented in
an ILS (see, for example, http://en.wikipedia.org/wiki/Autoland), so
what we want is a step-by-step way to solve the problem. The model we
will present is quite simple but includes the basic ideas of the process, with

1For instance, the words “retard, retard” (frequently cited in the forums, asking for
their meaning) remind the pilot to put the throttles to idle; otherwise, the system will
keep the plane along the runway at a speed too high to turn right or left, a manoeuvre
commonly needed to reach the airport gates.

2

http://aviation-safety.net/database/record.php?id=19640301-1
http://aviation-safety.net/database/record.php?id=19640301-1
http://www.kel.com/aero/pamila/category/three/
http://www.youtube.com/watch?v=Fe_pEK_kRVw
http://en.wikipedia.org/wiki/Autoland

Figure 1: A graphical description of the problem.

the advantage of needing no more than freshman calculus. It is based on
the wonderful exposition of the aforementioned Barshinger’s paper given by
E. W. Packel and S. Wagon (Animating calculus: Mathematica notebooks
for the laboratory. W.H. Freeman, 1994), but using more modern resources,
actual data from the Internet and free software instead of licensed (and
expensive) products.

The problem is as follows: an aircraft is approaching its destination, with
h the altitude above the airport. We want to know the most appropriate
distance L, measured from the airport, to start descent and the trajectory
(the approximation curve y = y(x)) that the aircraft should follow for a
smooth landing. Figure 1 illustrates the situation.

This is a quite complex problem, so we will make some assumptions
in order to simplify it. We also need to take into account some physical
constraints, in particular, the absolute value of the vertical component of
the acceleration, ay, must be lesser than some fixed constant k. This is to
avoid the discomfort (motion sickness) that passengers feel when the aircraft
suddenly ascents or descents. Fixing a coordinates system, with the origin
corresponding to the beginning of the runway, the boundary conditions are:

(a) The aircraft starts to descent at position (−L, h), therefore, y(−L) = h.

3

(b) The aircraft starts descent in horizontal position, so y′(−L) = 0 (in
other words, the aircraft is not making a “dive”).

(c) The aircraft concludes landing in an horizontal position, then y′(0) = 0.

(d) Finally, we consider that the landing is done when the aircraft touches
down, that is, y(0) = 0.

These conditions impose by themselves some restrictions on the approxima-
tion curve y = y(x). Note that the curve y = y(x) can not be a straight line
y = mx + n or a parabola y = ax2 + bx + c. Indeed, for the straight line
conditions (b) and (c) are not fulfilled. For the parabola, either condition
(b) or condition (c) fails.
As a consequence of this remark, the most simple polynomial curve that we
can use to model the approximation path is a cubic one: y = ax3 + bx2 +
cx + d.

3 The model

We are going to use the CAS Maxima to perform calculations in our model
for an aircraft landing. We start by defining the basic equation, in terms of
some parameters a, b, c and d to be determined:

(%i1) y:a*x^3+b*x^2+c*x+d;

(%o1) a x3 + b x2 + c x + d

We need the derivative of this function, because of conditions (b) and (c):

(%i2) dy:diff(y,x);

(%o2) 3 a x2 + 2 b x + c

Now, we impose conditions (a), (b), (c) and (d), in order to determine the
parameters for the curve y = y(x):

(%i3) ec1:subst(x=-L,y)=h;

(%o3) −aL3 + b L2 − cL + d = h

(%i4) ec2:subst(x=-L,dy)=0;

4

(%o4) 3 aL2 − 2 b L + c = 0

(%i5) ec3:subst(x=0,dy)=0;

(%o5) c = 0

(%i6) ec4:subst(x=0,y)=0;

(%o6) d = 0

(%i7) solve([ec1,ec2,ec3,ec4],[a,b,c,d]);

(%o7) [[a =
2 h

L3
, b =

3 h

L2
, c = 0, d = 0]]

Replacing these values for a, b, c and d in equation (%o1), we obtain the
approximation curve y = y(x):

(%i8) subst([a=2*h/L^3,b=3*h/L^2,c=0,d=0],y);

(%o8)
3 h x2

L2
+

2 h x3

L3

The (x, y) coordinates of the aircraft vary with time. Therefore we define
the function (implicitly depending on time):

(%i9) y(x):=(3*h*x(t)^2)/L^2+(2*h*x(t)^3)/L^3;

(%o9) y (x) :=
3 h x (t)2

L2
+

2 h x (t)3

L3

We assume that the aircraft reduces its horizontal velocity along the descent
(in fact, this is done in practice). In order to keep calculations more or less
simple we suppose that the aircraft horizontal speed depends linearly on
time; the aircraft starts the descent with horizontal velocity u0 and touches
down with horizontal velocity u1, where u1 < u0. If the descent last T
seconds, the equation for the horizontal velocity is,

(%i10) u(t):=u[0]-t*(u[0]-u[1])/T;

5

(%o10) u (t) := u0 −
t (u0 − u1)

T

Integrating this equation, we get the aircraft horizontal displacement for-
mula:

(%i11) integrate(u(t),t);

(%o11) u0 t− (u0 − u1) t2

2 T

This define a new function, but we don’t call it x(t) since is not yet the
equation we need (some suitable substitutions are going to be done), we call
it X(t):

(%i12) X(t):=u[0]*t-((u[0]-u[1])*t^2)/(2*T)+c;

(%o12) X (t) := u0 t− (u0 − u1) t2

2 T
+ c

We added an integration constant c (Maxima does not include integration
constants when the command integrate is used). When the descent starts,
the horizontal position of the aircraft relative to the airport is −L (this
determines c):

(%i13) solve(X(0)=-L,c);

(%o13) [c = −L]

(%i14) X(t):=u[0]*t-((u[0]-u[1])*t^2)/(2*T)-L;

(%o14) X (t) := u0 t− (u0 − u1) t2

2 T
− L

And at the instant T , the aircraft touches the runway at the origin of coor-
dinates:

(%i15) solve(X(T)=0,T);

(%o15) [T =
2 L

u1 + u0
]

Finally, we substitute this last condition in X(t) to obtain the aircraft hor-
izontal displacement formula x(t) as an explicit function of time:

6

(%i16) x(t):=subst(%o15,X(t));

(%o16) x (t) := subst (%o15, X (t))

(%i17) x(t);

(%o17) −L− (u0 − u1) (u1 + u0) t2

4 L
+ u0 t

Thus, the explicit equation for the approximation curve y = y(x) as function
of time t is:

(%i18) y(x);
(%o18)

3 h
(
−L− (u0−u1)(u1+u0)

4L t2 + u0 t
)2

L2

+
2 h

(
−L− (u0−u1)(u1+u0)

4L t2 + u0 t
)3

L3

The aircraft’s vertical velocity vy is given by the derivative dy
dt , and the

vertical acceleration ay is given by the second derivative d2y
dt2

. Let us compute
these:

(%i19) v[y]:radcan(diff(y(x),t));
(%o19)

−(96 u2
0 h t L4 +

(
72 u0 u2

1 − 168 u3
0

)
h t2 L3

+
(
12 u4

1 − 120 u2
0 u2

1 + 108 u4
0

)
h t3 L2

+
(
−30 u0 u4

1 + 60 u3
0 u2

1 − 30 u5
0

)
h t4 L

+
(
−3 u6

1 + 9 u2
0 u4

1 − 9 u4
0 u2

1 + 3 u6
0

)
h t5)/(16 L6)

(%i20) a[y]:radcan(diff(y(x),t,2));
(%o20)

−(96 u2
0 h L4 +

(
144 u0 u2

1 − 336 u3
0

)
h t L3

+
(
36 u4

1 − 360 u2
0 u2

1 + 324 u4
0

)
h t2 L2

+
(
−120 u0 u4

1 + 240 u3
0 u2

1 − 120 u5
0

)
h t3 L

+
(
−15 u6

1 + 45 u2
0 u4

1 − 45 u4
0 u2

1 + 15 u6
0

)
h t4)/(16 L6)

7

At this moment it seems that our problem has become quite complicated
to be worked out “by hand”, but with Maxima to perform the previous
calculations is a simple task. We will find the extreme values of vertical
acceleration. To determine the maximum and minimum of ay we equal its
derivative to 0, solving for t:

(%i21) solve(diff(%,t)=0,t);
(%o21)

[t = −
√

30
√

u2
1 + u2

0 L + 10 u0 L

5 u2
1 − 5 u2

0

,

t =
√

30
√

u2
1 + u2

0 L− 10 u0 L

5 u2
1 − 5 u2

0

,

t =
2 u0 L

u2
0 − u2

1

]

(After this calculation the reader should be sure about how useful a CAS
like Maxima can be at the classroom).
In order to have an idea about when there is a local maximum or a local
minimum for ay, we use GeoGebra to make an active graph of the function
ay in the time interval [0, T], using parameters u0, u1, h and L varying
between standard actual values (see Figure 2).

In the interval [0, T], the vertical acceleration ay has an absolute max-
imum for t = (

√
30

√
u2

1 + u2
0 L − 10 u0 L)/(5 u2

1 − 5 u2
0) and an absolute

minimum for t = 0. We can explicitly compute these extreme values:

(%i22) a[ymin]:subst(t=0,a[y]);

(%o22) −6 u2
0 h

L2

and

(%i23) a[ymax]:radcan(subst(t=(sqrt(30)*sqrt(u[1]^2+u[0]^2)*L
-10*u[0]*L)/(5*u[1]^2-5*u[0]^2),a[y]));

(%o23) −(27 u4
1 − 6 u2

0 u2
1 + 27 u4

0) h

(20 u2
1 − 20 u2

0) L2

For u1 < (4/5) u0, a restriction which includes most of the acceptable values
for horizontal velocities u0 and u1, the maximum of the magnitude of the
vertical acceleration, |ay|, is reached for t = 0, that is, when the aircraft
starts the descent (which is very reasonable, physically.

8

Figure 2: Determination of extrema of the vertical acceleration.

9

(%i24) subst(u[1]=(4/5)*u[0],radcan(-a[ymin]-a[ymax])) > 0;

(%o24)
1871 u2

0 h

1500 L2
> 0

For an acceptable comfort level, the modulus of vertical accelerations must
be lesser than some constant k (see, for example, http://ftp.rta.nato.
int/public/PubFulltext/RTO/MP/RTO-MP-036/MP-036-17.pdf), so we im-
pose an upper bound for the magnitude of the maximum vertical accelera-
tion:

(%i25) -a[ymin] < k;

(%o25)
6 u2

0 h

L2
< k

and solve for the distance L at which the descent should start:

(%i26) L>sqrt((6*u[0]^2*h)/k);

(%o26) L >
√

6 u0

√
h

k

In a transcontinental flight (with an Airbus 340, for example), its cruise
speed is about 900km/h (that is, 250m/s) with a cruise altitude of about
10000m (see http://en.wikipedia.org/wiki/Airbus A340#Specifications).
Note that we have rounded the actual values). Taking k = 0.1m/s2, the dis-
tance from the aircraft to the airport to start descent should be:

(%i27) float(subst([u[0]=250,h=10000,k=0.1],%));

(%o27) L > 193649.1673103709

That is, about 190km from the airport.
The practical procedure for computing the trajectory followed by the

pilots in actual flights, is called the “3-degree glide slope”, that is: The
trajectory must approximate as close as possible the ideal straight line lead-
ing to the airport with a declination angle of 3 degrees (see, for exam-
ple, http://www.navfltsm.addr.com/gs.htm or http://www.ohio.edu/
avionics/research/nav/ils/glideslope.cfm). Using the previous cal-
culation, h = 10000m and L = 193649m, we get a declination angle,

θ = tan−1

(
h

L

)
' 2.96◦

that is very close to the empirical value.

10

http://ftp.rta.nato.int/public/PubFulltext/RTO/MP/RTO-MP-036/MP-036-17.pdf
http://ftp.rta.nato.int/public/PubFulltext/RTO/MP/RTO-MP-036/MP-036-17.pdf
http://en.wikipedia.org/wiki/Airbus_A340#Specifications
http://www.navfltsm.addr.com/gs.htm
http://www.ohio.edu/avionics/research/nav/ils/glideslope.cfm
http://www.ohio.edu/avionics/research/nav/ils/glideslope.cfm

4 Special cases

Singular cases appear for airports surrounded by mountains. In this case
the most important parameter is not the distance to start the descent, be-
cause an obstacle must be avoided first. What we need to determine is the
aircraft speed at the moment that descent begins, just after passing over the
mountains. Therefore, in equation (%o25) we solve for u0:

(%i28) u[0]<sqrt((k*L^2)/(6*h));

(%o28) u0 <

√
k
h |L|√

6

4.1 Mexico City international airport

We consider the above calculations using as example Mexico City Inter-
national airport, with an elevation about 2200m above the mean sea level
(amsl), and about 70km away from the Popocatepetl volcano (about 5400m
amsl):

(%i29) float(subst([k=0.1,h=5400-2200,L=70000],%o29));

(%o29) u0 < 159.7524126056735

This is the aircraft speed in m/s. Converting to km/h:

(%i30) u[0]=160*0.001*3600;

(%o30) u0 = 576.6

The aircraft’s speed needs to be reduced to about 2/3 of its cruise speed just
before starting the descent. In a Madrid-Mexico City transcontinental flight
driven by Iberia, for example, the screens in the cabin show information like
time to destination, estimated arrival time, distance to destination and the
aircraft speed with respect to the ground (see Figure 3). In the experience
of one of the authors, who makes this trip frequently (JAVR), the data
for a standard flight when approaching Mexico City International Airport
from Puebla (which is near Popocatepetl volcano), show a relative good
approximation with the values obtained here.

11

Figure 3: Flight data as seen in the passenger’s cabin.

4.2 Lake Tahoe airport

For the Lake Tahoe airport, which is located at an elevation about 1910m
amsl and about 18km away from the Genoa peak (2790m amsl), the previous
calculations give an initial horizontal speed to start the descent of:

(%i31) float(subst([k=0.1,h=2790-1910,L=18000],%o28));

(%o31) u0 < 78.33494518006403

Again, this is the speed in m/s. Converting to km/h:

(%i32) u[0]=78*0.001*3600;

(%o32) u0 = 280.8

Thus, the aircraft’s speed needs to be reduced to about 1/3 of its cruise
speed just before starting the descent. This result, of course, was to be
expected since the plane has less space for descending.

12

5 Concluding remarks

Calculus teachers can suggest to their students interesting case studies based
on realistic problems, some of them requiring only basic techniques or re-
sults. The use of software can help with complicated and boring calculations
but, most important, can attract the attention of students. A standard math
project, like the one presented here, can integrate: Searching information
in the world wide web, downloading videos, and performing calculations or
graphing functions with the help of suitable software (Maxima and GeoGe-
bra being good examples for that). The experience of using this approach in
our classes is quite rewarding. In addition to this, we believe that modelling
real problems that involve actual data and require the use of computational
tools, should be part of the training of any math student.

Acknowledgements

JAVR benefited from useful discussions with Dagoberto Salazar on topics
related to air navigation, when he was a lecturer at the Escola d’Enginyeria
de Telecomunicació i Aeroespacial de Castelldefels EETAC (Aerospatial and
Telecommunications Engineering College, UPC, Spain); also, thanks are due
to the National Council of Science and Technology (CONACyT, Mexico),
for the grant CB-JB2-78791, which partially supported this project. Fi-
nally, both authors express their gratitude to Fabrizio Fresia, who took the
photograph appearing in Figure 3 and shared it with us.

Appendix A: Introduction to Maxima

In this Appendix, we give a very brief introduction to Maxima. Of course,
the program has many more possibilities than those listed here. We restrict
ourselves to explaining the commands used in the paper.

Maxima is a Computer Algebra System (CAS). It has several graphical
interfaces, and we will assume that the reader is using wxMaxima (available
at http://andrejv.github.com/wxmaxima/), which is very similar to that
of the commercial package Mathematica R© by Wolfram. When you start
a Maxima session you are presented a blank document and you can start
by directly typing commands (see figure 4). For example, you type “2+2”,
make Shift+Enter and Maxima returns the answer:

(%i1) 2+2;

13

http://andrejv.github.com/wxmaxima/

Figure 4: A wxMaxima session.

(%o1) 4

Note that to every input, an indicator like %i1 is assigned. The same is done
with the output. This makes very easy to refer to previous computations.
For example, we can now evaluate the cosinus of 3π

4 by concatenating (pip-
ing) commands. Note also that the constant π is written %pi (other built-in
constants are %i, %e):

(%i2) cos(3*%pi/%o1),numer;

(%o2) − 0.70710678118655

Another way to concatenate commands is by composition; this is closer
to the standard mathematical notation. In the following example we first
compute the limit of ax3−x+1

−2x3+x2−x+2
when x → +∞ (through the command

limit(expression,variable,value)) and then evaluate the result (−a
2)

when a = −3 by making a substitution (this is done with the command
subst(variable=value,expression)):

14

(%i3) subst(a=-3,limit((a*x^3-x+1)/(-2*x^3+x^2-x+2),x,inf));

(%o3)
3
2

This example shows that Maxima knows how to do limits. It is no surprise
that it also knows how to do derivatives (with the command diff(function,variable,order
of the derivative), even of a function depending on parameters (α in this
case; note the way to write greek symbols in wxMaxima):

(%i4) ’diff(exp(%alpha*x^2+1),x,2)=diff(exp(%alpha*x^2+1),x,2);

(%o4)
d2

d x2
eα x2+1 = 4α2 x2 eα x2+1 + 2 α eα x2+1

The apostrophe ’ in front of a command prevents evaluation, so in the left
hand side we have the derivative in formal notation. We can simplify the
result by grouping factors with the command factor (the % refers to the
last output):

(%i5) factor(%);

(%o5)
d2

d x2
eα x2+1 = 2α

(
2 α x2 + 1

)
eα x2+1

Functions are defined exactly with the same notation we use in the black-
board:

(%i6) f(x):=x^2*sin(2*x);

(%o6) f (x) := x2 sin (2 x)

We can evaluate a function on a certain value of its argument in a straight-
forward manner:

(%i7) f(%pi/4);

(%o7)
π2

16

Once we have a function defined, we can do any computation on it. For
example, we can integrate it:

(%i8) integrate(f(x),x);

15

(%o8)
4 x sin (2 x) +

(
2− 4 x2

)
cos (2 x)

8

Or integrate over a certain interval, in this case the [0, 1]:

(%i9) integrate(f(x),x,0,%pi/2);

(%o9)
π2 − 2

8
− 1

4

Another possibility to simplify expressions, particularly rational ones, is the
ratsimp command:

(%i10) ratsimp(%);

(%o10)
π2 − 4

8

Functions can have subscripts:

(%i11) fx:=’diff(f(x),x);

(%o11) fx (x) :=
d

d x
f (x)

In this example we get the derivative:

(%i12) fx;

(%o12)
d

d x

(
x2 sin (2 x)

)
To finish this brief introduction, let us indicate the use of the solve

command to solve systems of equations. We first define the equations:

(%i13) eq1:a*x+2*y=3;

(%o13) 2 y + a x = 3

(%i14) eq2:-x+y=1;

(%o14) y − x = 1

And then solve the system (eq1,eq2) for (x,y) as the indeterminates. Note
that the equations and the indeterminates are passed to Maxima in the form
of lists, enclosed in squared brackets; the solution is given as a list, also:

(%i15) solve([eq1,eq2],[x,y]);

(%o15) [[x =
1

a + 2
, y =

a + 3
a + 2

]]

16

Appendix B: Introduction to Geogebra

GeoGebra is an interactive geometry software oriented to be used in high
school math courses, and it was developed by M. Hohenwarter, M. Borcherds
and Y. Kreis. GeoGebra is a free, multilanguage and multiplataform soft-
ware, it can be obtained at http://www.geogebra.org (in this paper we
have used version 3.2.0.0).
In general, to each algebraic object in GeoGebra, it corresponds a geomet-
ric object and vice versa. These objects can be constructed with a click in
the appropriate icon, or writing the corresponding command in the input
window. In order to contruct the active graph presented in Section 3, you
can perform the following steps (see Figure 5):

1. Introduce the parameter u0, selecting the Slider tool and making click
on the drawing pad. In the contextual menu that appears, define the
name, min, max and increment values for the parameter. Repeat this
procedure to define the parameters u1, h and L.

2. In the input window assign the value for the modulus of the vertical
acceleration threshold (here we used k = 0.1).

3. In the input window define the function a(x) with the following com-
mand:

a(x) = -(96*u_0^2*h*L^4 + (144*u_0*u_1^2-336*u_0^3)*h*L^3*x) +
(36*u_1^4-360*u_0^2*u_1^2+324*u_0^4)*h*L_^2*x^2 +
(-120*u_0*u_1^4+240*u_0^3*u_1^2-120*u_0^5)*h*L*x^3 +
(-15*u_1^6+45*u_0^2*u_1^4-45*u_0^4*u_1^2+15*u_0^6)*h*x^4) / (16*L^6)

4. Restrict the previous function to the interval [0, 2L/(u0+u1)] with the
command

Function[a(x),0,2*L/(u_0+u_1)]

5. Plot the point A at the left extreme of the graph of ay with the com-
mand

A = (0, a(0))

6. Plot the point T at the right extreme of the graph of ay with the
command

17

http://www.geogebra.org

Figure 5: Slider menu in GeoGebra.

A = (2*L/(u_0+u_1), a(2*L/(u_0+u_1)))

7. Finally, plot the limits for the maximum and minimum vertical accel-
eration

y = k and y = −k

Once the construction is done, it is possible to change dynamically the value
of any parameter by selecting the Move tool and dragging the corresponding
slider button.

18

	Introduction
	Background
	The model
	Special cases
	Mexico City international airport
	Lake Tahoe airport

	Concluding remarks

