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abstract: This is my attempt to recreate the Poincare subpackge
for computing Poincaré sections of autonomous Hamiltonian sys-
tems, present in the DEtools package of Maple™1, and due to Cheb-
Terrab and Oliveira (see Comp. Phys. Comm. 95 2–3 (1996) 171–
189).

important remark: If you are not using the WxMaxima frontend,
omit the wxplot size commands, and use draw3d, draw2d instead
of wxdraw3d, drawd2d when replicating the commands given here.

1 Introduction

The package poincare.mac contains three functions: hameqs, poincare3d, and
poincare2d, and calls a pre-compiled fourth function rkfun.fasl, obtained
from rkfun.lisp, a modification of the vanilla rk function of Maxima with
optimized code due to Richard Fateman. The original file is available at the
URL https://people.eecs.berkeley.edu/~fateman/lisp/rkfun.lisp, and
a copy of the lisp and the fasl files is distributed with poincare.mac. The files
can be downloaded from:
http://galia.fc.uaslp.mx/~jvallejo/poincare.mac

http://galia.fc.uaslp.mx/~jvallejo/rkfun.lisp

http://galia.fc.uaslp.mx/~jvallejo/rkfun.fasl

http://galia.fc.uaslp.mx/~jvallejo/PoincareDocumentation.pdf

This document describes the syntax for these functions and gives some examples
of use, with applications to some well-known and documented physical systems
(to ease comparison with other programs).

The code performs far better than the corresponding command in Maple™.
Nevertheless, the main goal here is usability and user-friendliness, leaving aside

1Used here: Maple 2016:1a (build 1133417). Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario.
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technical questions regarding numerical analysis. All the timings shown have
been obtained in a Slackware 14.2 box running an Intel™ processor 4x Intel(R)
Core(TM) i5-4590T CPU @ 2.00GHz, with 12199MB of memory. The Maxima
version was 5.38.0, using SBCL-LISP 1.3.5, and the wxMaxima one 16.4.2.

To test the package, the easiest way is to put a copy of files poincare.mac and
rkfun.fasl in your working directory and do batch("poincare.mac"). That’s
all. Then, you can proceed directly to the examples in section 2.
If desired, the package can be installed system-wide by putting a copy of the files
poincare.mac and rkfun.lisp in a folder contained in the environment variable
file search maxima, such as /usr/share/maxima/5.38.0/share/contrib/ (you
may need administrator rights in order to do that), and loading them with
batch("poincare.mac").

Suggestions and corrections are more than welcome. I take the opportunity to
thank Prof. R. Fateman for the highly optimized rkfun.lisp code.

Start a Maxima session (I will use wxMaxima in what follows, please read the
“Important remark” following the abstract) and load the package:

(%i1) batch("poincare.mac");

The functions defined in the package will show up, let us briefly discuss them.
The first function constructs the Hamiltonian equations for a given Hamiltonian
H(q1, p1, . . . , q2, p2). Any names can be used for the variables, but they must
be given in pairs “coordinate, conjugate momentum”. A good choice (used
internally) is (q1, p1, ..., qn, pn). A name must be provided for the components
of the Hamiltonian vector field

XH(q1, p1, ..., qn, pn) =

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

Once a name, say XH, is chosen, the components of the Hamiltonian vector
field will be globally defined functions XHj with 1 ≤ j ≤ 2n, where n is the
number of degrees of freedom, and will be available to Maxima. Notice that,
for instance,

XH1(t, q1, p1, ..., qn, pn) =
∂H

∂p1

and

XH2(t, q1, p1, ..., qn, pn) = −∂H

∂q1
.

Here is the code:
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(%i2) hameqs(H,name):=block([vv,t,tvv,n,Q,P,eqq,eqp,eqs],

vv:args(lhs(apply(fundef,[H]))),tvv:cons(t,vv),

n:length(vv)/2,

Q:makelist(vv[2*j-1],j,1,n),P:makelist(vv[2*k],k,1,n),

eqq:makelist(float(diff(apply(H,vv),P[j])),j,1,n),

eqp:makelist(float(-diff(apply(H,vv),Q[j])),j,1,n),

eqs:join(eqq,eqp),

for j thru 2*n do

define(funmake(concat(name,j),tvv),

block([],mode_identity(float,vv),eqs[j])),

apply(compile,makelist(concat(name,j),j,1,2*n)),

[makelist(apply(concat(name,j),tvv),j,1,2*n),vv,

makelist(concat(name,j),j,1,2*n)]

)

Important remark: Although we will work with autonomous Hamiltonian
systems, the components XHj returned by this command will have the set
(t, q1, p1, ..., qn, pn) as arguments. This is necessary to maintain consistency
with the rkfun function, which can work with both, autonomous and non-
autonomous systems. As we will see in the examples, the output of hameqs is
a list composed of three sublists. The first sublist gives the expressions for the
components XHj, which will be always free of the t coordinate, so there is little
chance of making a mistake when working with them. But if at some point
you get a message talking about “wrong number of arguments” or something
similar, this could be the cause. The other sublists contained in the output of
hameqs are a list of the phase-space variables as defined by the user, and a list
with the names of the compothenents of the Hamiltonian vector field (in the
notational example we are using, it would be [XH1,...,XHn]).

Next, it follows an auxilliary function to remove exactly one element at a given
position, from a given list:

(%i3) lextract(ll,n):=block([l,a,b],

l:length(ll),a:rest(ll,n),b:rest(ll,n-l-1),

append(b,a)

)

poincare3d gives the projection of the Hamiltonian orbits along a certain co-
ordinate which is given as an argument coord. Other arguments are: a list of
initial conditions inicond = [q1(0), p1(0), . . . , qn(0), pn(0)], and a list character-
izing the time domain timestep = [t, tini, tfin, step]. These arguments are also
present in the poincare2d function below:
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(%i4) poincare3d(H,name,inicond,timestep,coord):=block(

[heq,vars,tvars,hfuns,c,sol],

heq:hameqs(H,name),

vars:heq[2],

tvars:cons(t,vars),

hfuns:heq[3],

c:first(sublist_indices(vars,lambda([x],x = coord))),

sol:rkfun(hfuns,tvars,float(inicond),timestep),

map(lambda([x],lextract(x,c)),map(lambda([x],rest(x)),sol))

)

The function poincare2d gives the surface of section selected by a list of ar-
guments of the form scene = [q0, c, qi, qj], that is, the surface q0 = c in which
coordinates [qi, qj] are shown. It is the main command in the package, and its
syntax tries to imitate the one used in Maple™ . The method used in the com-
putation of the Poincaré surface is that described in the paper by Cheb-Terrab
and Oliveira: we select a set of initial conditions, follow the corresponding orbit
numerically (at this point the rkfun is used in all its glory), and detect where
we have crossing the q0 = c surface by looking at changes of sign in the list of
values for this coordinate minus c.

(%i5) poincare2d(H,name,inicond,timestep,scene):=block(

[heq,vars,tvars,hfuns,solu,c,soluc,sola,solb,subind,sol,e,f],

heq:hameqs(H,name),

vars:heq[2],

tvars:cons(t,vars),

hfuns:heq[3],

solu:rkfun(hfuns,tvars,float(inicond),timestep),

c:first(sublist_indices(vars,lambda([x],x=first(scene)))),

soluc:map(lambda([x],x[c+1]),solu),

sola:rest(soluc,-1)-second(scene),

solb:rest(soluc)-second(scene),

subind:sublist_indices(sola*solb,lambda([x],is(x<0))),

sol:makelist(solu[k],k,subind),

e:first(sublist_indices(vars,lambda([x],x=third(scene))))+1,

f:first(sublist_indices(vars,lambda([x],x=fourth(scene))))+1,

makelist([j[e],j[f]],j,sol)

)

2 Example: Two uncoupled oscillators (rational
frequencies)

We follow here S. Lynch: Dynamical Systems with Applications using Maple,
Birkhauser (2001), Chapter 9.
The Hamiltonian of two uncoupled oscillators is (in (x, v, q, p) coordinates, just
to show that any naming convention can be used. But, of course, here v is the
canonical momentum conjugate to x, and p that conjugate to q):
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(%i6) H(x,v,q,p):=w1*(x^2+v^2)/2+w2*(q^2+p^2)/2$

The corresponding Hamiltonian equations are:

(%i7) hameqs(H,XH);

[v w1 ,−w1x, pw2 ,−q w2 ] (%o7)

Let us fix the values of the frequencies w1, w2:

(%i8) w1:8$

(%i9) w2:3$

Next we plot the 3D Poincaré surface by projecting along the p coordinate (thus,
the resulting graphics has (x, v, q) coordinates):

(%i10) wxplot_size:[400,500]$

(%i11) data1:poincare3d(H,XH,[0.3,0.5,0,1.5],[t,0,40,0.01],p)$

(%i12) wxdraw3d(title="Poincare section in 3D",

dimensions=[350,500],view=[85,30],

xlabel="x",ylabel="v",zlabel="q",

xtics=1,ytics=1,

surface_hide=true,color="light-blue",

explicit(0,x,-1.35,1.35,y,-1.35,1.35),

point_size=0,points_joined=true,color=black,line_width=1,

points(data1),

user_preamble="set xyplane at -1.8",color="light-blue",

explicit(-1.8,u,-1.5,1.35,v,-1.35,1.35),

point_size=1,point_type=filled_circle,color=red,points_joined=false,

points([[-0.56,0,-1.78],[0.28,-0.52,-1.78],[0.3,0.48,-1.78],

[-0.56,0,0],[0.28,-0.52,0],[0.3,0.48,0]]));
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(%t12)

(%o12)

The graphics shows a 2D section at q = 0. Let’s check this with the poincare2d
command:

(%i13) data2:poincare2d(H,XH,[0.3,0.5,0,1.5],[t,0,40,0.01],[q,0,x,v])$

(%i14) wxdraw2d(title="Poincare section in 2D",

xlabel="x",ylabel="v",

xtics=0.2,

point_size=1,point_type=7,color=red,

points_joined=false,proportional_axes=xy,

points(data2));
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(%t14)

(%o14)

3 Example: Two uncoupled oscillators (irrational
frequencies)

Again, we follow S. Lynch: Dynamical Systems with Applications using Maple,
Birkhauser (2001), Chapter 9. The Hamiltonian is the same as above, but now
the frequencies have irrational ratio:

(%i15) remvalue(w1,w2)$

(%i16) w1:sqrt(2)$

(%i17) w2:1$

(%i18) data3:poincare3d(H,XH,[0.3,0.5,0,1.5],[t,0,300,0.01],p)$

Things look different now, the orbits are dense:
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(%i19) wxdraw3d(title="Poincare section in 3D",

dimensions=[350,500],view=[85,30],

xlabel="x",ylabel="v",zlabel="q",

xtics=1,ytics=1,

surface_hide=true,color="light-blue",

explicit(0,x,-1.35,1.35,y,-1.35,1.35),

point_size=0,points_joined=true,color=gray,line_width=0.5,

points(data3),

user_preamble="set xyplane at -1.8"

);

(%t19)

(%o19)

The 2D section reflects that change of behavior:

(%i20) data4:poincare2d(H,XH,[0.3,0.5,0,1.5],[t,0,300,0.01],[q,0,x,v])$
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(%i21) wxdraw2d(title="Poincare section in 2D",

xlabel="x",ylabel="v",xtics=0.2,proportional_axes=xy,

point_size=1,point_type=7,color=red,points_joined=false,

points(data4));

(%t21)

(%o21)

The same occurs in the [q, p] plane (projection along v, 2D section at x = 0):

(%i22) data5:poincare2d(H,XH,[0.3,0.5,0,1.5],[t,0,300,0.01],[x,0,q,p])$

(%i23) wxdraw2d(title="Poincare section in 2D",

xlabel="q2",ylabel="p2",xtics=0.5,proportional_axes=xy,

point_size=1,point_type=7,color=red,points_joined=false,

points(data5));

(%t23)
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(%o23)

The conclusion is: the (quasiperiodic) motion takes place in tori! The KAM
theorem tells us what happens with these tori, and the trajectories on them,
when the Hamiltonian H contains a non-linear term (perturbation), and the
energy increases. The kind of behavior described by KAM will be illustrated in
the following examples (although the standard KAM theorem may not apply
if the frequencies w1, w2 are commensurable!. Some additional reasoning is
required to apply the theorem, as done in R. Cuerno et al.: Deterministic chaos
in the elastic pendulum: A simple laboratory for non linear dynamics, Am. J.
Phys. 60 1 (1992) 73–79).

4 Example: The Hénon-Heiles model

Here, we intend to reproduce the graphics in Cheb-Terrab and Oliveira: Poincaré
sections of Hamiltonian systems. Comp. Phys. Comm. 95 2-3 (1996) 171–189.

(%i24) wxplot_size:[600,400]$

The Hamiltonian in this case is:

(%i25) K(q1,p1,q2,p2):=1/2*(q1^2+p1^2+q2^2+p2^2)+q2*q1^2-q2^3/3$

We fix some initial conditions for (q1, q2, p2), the total energy H (in this case,
H = 1/24), and then proceed to compute the initial values of p1 corresponding
to these:

(%i26) series1:realroots(K(-0.2,p1,-0.2,0.1)=1/24)$

(%i27) data6:poincare2d(

K,XK,[-0.2,rhs(first(series1)),-0.2,0.1],[t,-300,300,0.05],[q1,0,q2,p2]

)$

(%i28) time(%);

[0.247] (%o28)

(%i29) data7:poincare2d(

K,XK,[-0.2,rhs(second(series1)),-0.2,0.1],[t,-300,300,0.05],[q1,0,q2,p2]

)$

(%i30) time(%);

[0.222] (%o30)
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(%i31) wxdraw2d(title="Poincare sections H=1/24",

xlabel="q2",ylabel="p2",

point_type=7,point_size=0.2,

points(append(data6,data7)),

xrange=[-0.4,0.4],yrange=[-0.4,0.4]);

(%t31)

(%o31)

Let us see what happens from a 3D perspective. We clearly see the origin of
the “wings” in the graphics:

(%i32) data8:poincare3d(

K,XK,[-0.2,rhs(second(series1)),-0.2,0.1],[t,-300,300,0.05],p2

)$

(%i33) wxplot_size:[500,700]$
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(%i34) wxdraw3d(title="3D Poincare Sections H=1/24",

dimensions = [500, 700],view = [85,300],

surface_hide=true,color="light-blue",

explicit(0,x,-0.3,0.3,y,-0.3,0.3),

point_size=0,points_joined=true,color=khaki,line_width=0.5,

points(data8),

xlabel="q1",ylabel="p1",zlabel="q2",

user_preamble="set xyplane at -0.31",

xrange=[-0.35,0.35],yrange=[-0.35,0.35],xtics=0.2,ytics=0.2);

(%t34)

(%o34)

In the following commands, we increase the energy to E = 1/18, E = 1/12, and
finally E = 1/6, the onset of chaos:
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(%i35) series2:realroots(K(-0.2,p1,-0.2,0.1)=1/18)$

(%i36) data9:poincare2d(

K,XK,[-0.2,rhs(first(series2)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i37) time(%);

[1.947] (%o37)

(%i38) data10:poincare2d(

K,XK,[-0.2,rhs(second(series2)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i39) time(%);

[1.878] (%o39)

(%i40) wxplot_size:[600,400]$

(%i41) wxdraw2d(title="Poincare sections H=1/18",

xlabel="q2",ylabel="p2",

point_type=7,point_size=0.1,

points(append(data9,data10)),

xrange=[-0.35,0.4],yrange=[-0.4,0.4]);

(%t41)

(%o41)
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(%i42) series3:realroots(K(-0.2,p1,-0.2,0.1)=1/12)$

(%i43) data11:poincare2d(

K,XK,[-0.2,rhs(first(series3)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i44) time(%);

[1.947] (%o44)

(%i45) data12:poincare2d(

K,XK,[-0.2,rhs(second(series3)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i46) time(%);

[1.918] (%o46)

(%i47) wxdraw2d(title="Poincare sections H=1/12",

xlabel="q2",ylabel="p2",

point_type=7,point_size=0.1,

points(append(data11,data12)),

xrange=[-0.4,0.55],yrange=[-0.5,0.5]);

(%t47)

(%o47)

(%i48) series4:realroots(K(-0.2,p1,-0.2,0.1)=1/6)$
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(%i49) data13:poincare2d(

K,XK,[-0.2,rhs(first(series4)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i50) time(%);

[1.999] (%o50)

(%i51) data14:poincare2d(

K,XK,[-0.2,rhs(second(series4)),-0.2,0.1],[t,-500,500,0.01],[q1,0,q2,p2]

)$

(%i52) time(%);

[1.908] (%o52)

(%i53) wxdraw2d(title="Poincare sections H=1/6",

xlabel="q2",ylabel="p2",

point_type=7,point_size=0.2,

points(append(data13,data14)),

xrange=[-0.55,1],yrange=[-0.6,0.6]);

(%t53)

(%o53)

The graphics coincide with those of Cheb-Terrab and Oliveira. Now, armed
with confidence, we can proceed to more sophisticate figures...
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5 Example: The elastic pendulum

Here we reproduce some figures from Carretero et al.: Regular and chaotic
behaviour in an extensible pendulum. Eur. J. Phys. 15 (1994) 139–148. First,
we fix a parameter:

(%i54) eps:3/4$

Now comes the Hamiltonian:

(%i55) H(q1,p1,q2,p2):=(p1^2+p2^2)/2+(q1^2+q2^2)/2-eps*q1^2*(1+q2)/2$

We can obtain an analytic expression for p2 once the energy E, and the initial
values of (q1, p1, q2) are known:

(%i56) solve(H(q1,p1,q2,p2)=E,p2);

(%o56)

[p2 = −
√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 8E

2

p2 =

√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 8E

2
]

(%i57) subst(E=0.00875,%);

(%o57)

[p2 = −
√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 0.07

2
,

p2 =

√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 0.07

2
]

(%i58) define(f(q1,p1,q2),rhs(first(%)));

f (q1 , p1 , q2 ) := −
√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 0.07

2
(%o58)

(%i59) define(g(q1,p1,q2),rhs(second(%th(2))));

g (q1 , p1 , q2 ) :=

√
−4q2 2 + 3q1 2 q2 − q1 2 − 4p1 2 + 0.07

2
(%o59)

Now, we compute the q2 = 0 surface of section, for a big enough set of initial
conditions (q1, p1, q2):
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(%i60) for j:1 thru 10 do

data1[j]:poincare2d(

H,XH,[0.15,j/100,0.001,g(0.15,j/100,0.001)],[t,0,1000,0.01],[q2,0,q1,p1]

)$

(%i61) time(%);

[17.222] (%o61)

(%i62) points1:xreduce(append,create_list(data1[j],j,makelist(k,k,1,10)))$

(%i63) wxdraw2d(title="Poincare sections E=0.00875",

xlabel="q1",ylabel="p1",

point_type=7,point_size=0.1,

points(points1)

);

(%t63)

(%o63)

In order to fill the center of the figure, we must select another set of initial
conditions, whose orbits pass through that region:

(%i64) for j:1 thru 10 do

data2[j]:poincare2d(

H,XH,[2*j/100,0,j/100+0.0025,f(2*j/100,0,j/100+0.0025)],

[t,0,1000,0.01],[q2,0,q1,p1]

)$
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(%i65) time(%);

[17.369] (%o65)

(%i66) points2:xreduce(append,create_list(data2[j],j,makelist(k,k,1,10)))$

(%i67) wxdraw2d(title="Poincare sections E=0.00875",

xlabel="q1",ylabel="p1",

point_type=7,point_size=0.1,

points(points2)

);

(%t67)

(%o67)

Joining both sets of orbits we get a nice figure...
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(%i68) wxdraw2d(title="Poincare sections E=0.00875",

xlabel="q1",ylabel="p1",

point_type=7,point_size=0.1,

points(append(points1,points2))

);

(%t68)

(%o68)

The reader can have some fun by repeating these commands with higher ener-
gies, for instance, taking the values E = 0.01875, E = 0.02875, E = 0.03875,
as it is done in the aforementioned paper by Carretero et al. The result is a
diffusion process at the end of which the points are uniformly scattered, thus
illustrating the fact that the dynamics has lost any regularity.

6 Conclusions

The Maxima package poincare.mac reproduces the results appearing in text-
books and research papers and obtained using the DEtools in Maple™ . The
graphical output quality is quite good, comparable (to say the least) to that of
commercial software, but at no cost (for comparison, Maple™ in its student’s
version costs 1 000USD.) Regarding computation times, the Maxima version out-
performs its Maple™ competitor: the heaviest computation in this paper is ex-
ecuted in (%i64), taking 50 seconds in Maple™ (as can be seen in the worksheet
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http://galia.fc.uaslp.mx/~jvallejo/ElasticPendulum-MapleSession.pdf),
while Maxima only requires a third of this time.
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