
The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

Implementing the RSA cryptosystem with Maxima CAS

Juan Monterde José A. Vallejo
monterde@uv.es jvallejo@fc.uaslp.mx

Facultat de Matemàtiques Facultad de Ciencias
Universitat de València Universidad Autónoma de San Luis Potosı́

Spain México

Abstract
We show a possible implementation of the RSA algorithm with Maxima CAS. Theoretical back-

ground and numerous examples are given, along with the code. We also implement a simplified
version of the digital signature method and comment on some ideas for using this material in the
classroom.

1 Introduction
A basic problem in cryptography is the reduction of the number of operations needed to deal with big
numbers. This is usually done through the use of congruences. An example is the RSA algorithm,
in which calculations are done modulo n, where n is the product of two (big) primes p and q. In
practical applications, the size in bits of n is 1024, 2048 or even 4096 (corresponding to 309, 617 and
1234 decimal digits, respectively). Thus, the computational cost if we were to use these numbers “as
they are” would be prohibitive.

One possibility is to make use of the Chinese remainder theorem, so the calculations can be
transferred from the ring Zn to the ring Zp×Zq . The sum of the bit length of p and q is the bit length
of n, so p and q can be taken considerably smaller than n, and the calculations are speeded up notably.
The reason behind these properties is that the Chinese remainder theorem allows one to represent big
integers as n−tuples of long (Euclidean) divisions remainders. In this form, operations such as sums
or multiplications can be done in parallel in real time. However, comparison or division are not so
direct, and the inverse problem (given n factoring it into p and q) is computationally intractable for
large n. Precisely, this fact lies at the foundation of the RSA algorithm [7]. However, when using
RSA encryption one has to compute expressions of the form ab mod c, with large a, b. For these, the
Chinese remainder theorem is not so practical, and other algorithms are preferred, such as the repeated
squaring method. From a mathematical point of view, the other essential ingredients of the RSA
cryptosystem are Fermat’s Little Theorem and its generalization, Euler’s theorem on congruences.
These facts will be reviewed in Section 2.

Our aim in this paper is to show how to implement the RSA cryptosystem with the Maxima CAS
[4], which we do in Section 3. This choice of software is motivated by pedagogical as well as prac-
tical reasons: the source code is freely available, the students can get a copy at no cost (thus, they

http://maxima.sourceforge.net/


The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

can work at home with the same program they use at the classroom), the developers are very ac-
tive and accessible, and the commands and syntax are very intuitive (some of the Maxima syntax
is merely a translation of the plain English used to describe the mathematical operations, such as
integrate(xˆ2,x,0,1): “integrate x2 with respect to x between 0 and 1”). These reasons al-
most coincide with the ones expressed by A. McAndrew in [5], a paper which describes in great detail
the use of Maxima and Axiom in teaching a course on cryptography (for an interesting alternative, see
also [6], where SAGE is used instead of Maxima). Indeed, the present paper is based on a 10−hour
summer course given by one of the authors (JM) to students of mathematics, physics and engineering,
ranging from first-year to post-graduates. Our conclusions are also similar to those of McAndrew in
[5] (Maxima is particularly well suited for basic cryptography), so we refer to his paper for a justi-
fication of the educational aspects and focus our attention on the technical details: the mathematical
foundation of the RSA cryptosystem and its practical implementation on Maxima.

In Section 4 we show how to apply the RSA techniques to guarantee the authorship of a mes-
sage, through the use of digital signatures. We include sample codes for all the functions described
in the text along with examples of their usage, so the paper is relatively self-contained. Informa-
tion about the use of Maxima can be found in the page http://maxima.sourceforge.net/
documentation.html.

Section 5 offers some comments about how to use the present material in actual cryptography
courses.

Some technical details about the software used:
The version of Maxima was 5.24.0, with the interface wxMaxima (version 11.04.0). Both can

be downloaded for free from http://maxima.sourceforge.net/download.html and
http://andrejv.github.com/wxmaxima, respectively.

The code examples assume that the messages are written in pure ASCII (not extended), to avoid
some problems with the XML rendering of non printable characters in wxMaxima. When expressing
the path to a file, we assume that the user has a Linux R© or Mac OSX R© system. For MS Windows R©,
little changes are required.

The source code for the programs presented in this paper, suppressed outputs and some related
material, can be found at http://galia.fc.uaslp.mx/˜jvallejo/Software.html.

2 Algebraic preliminaries

2.1 Modular arithmetic
We begin by recalling Euclid’s algorithm. To compute the greatest common divisor (gcd) of two
integers a, b ∈ Z, first divide a by b to find the quotient q1 and the remainder r1:

a = q1 · b + r1.

Then, repeat the process substituting a by b and b by r1:

b = q2 · r1 + r2.

Repeat again, this time using r1 and r2, to find:

r1 = q3 · r2 + r3.

35

http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/download.html
http://andrejv.github.com/wxmaxima
http://galia.fc.uaslp.mx/~jvallejo/Software.html


The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

The algorithm continues this way until one of the ri divides ri−1. In this case, gcd(a, b) = ri−1. Note
that the process ends after a finite number of steps, as in each one of them we have ri < ri−1.

Example 1 To compute gcd(1547, 560), we proceed as follows:

1547 = 2 · 560 + 427;

560 = 1 · 427 + 133;

427 = 3 · 133 + 28;

133 = 4 · 28 + 21;

28 = 1 · 21 + 7.

As 7|21, we are done: gcd(1547, 560) = 7.

Maxima has a function to compute the gcd:

(%i1) gcd(1547,560);

(%o1) 7

A basic fact from Number Theory is the following: If d = gcd(a, b), with a > b, there exist two
integers u, v such that

d = ua + vb.

This is called the Bézout identity (see [2], Section 1.2).

Example 2 We have just seen that gcd(1547, 560) = 7. Let us find u, v such that 7 = u·1547+v ·560.
We can use the intermediate steps in Euclid’s algorithm, but reversing direction (from end to start):

7 = 28− 1 · 21

= 28− (133− 4 · 28) = −133 + 5 · 28

= −133 + 5 · (427− 3 · 133) = 5 · 427− 16 · 133

= 5 · 427− 16 · (560− 427) = −16 · 560 + 21 · 427

= −16 · 560 + 21 · (1547− 2 · 560) = 21 · 1547− 58 · 560.

Thus,
7 = 21 · 1547− 58 · 560.

The Maxima command gcdex does the same:

(%i2) gcdex(1547,560);

(%o2) [21,−58, 7]

As a direct application of the Bézout identity, we have that the invertible elements for the product
in1 Z/mZ, are precisely those coprimes with m. In other words: the integers a for which there exists
a b such that ab ≡ 1 (mod m), are precisely those a satisfying gcd(a,m) = 1.

1This is the ring formed by the equivalence classes determined by the binary relation “congruence modulo m”: two
integers a, b ∈ Z are congruent modulom iff their difference a−b is a multiple ofm. In this case we write a ≡ b (modm).

36



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

Example 3 Modulo 841, the integer 160 is invertible. Indeed, 841 = 292 while 160 = 25 · 5. Thus,
gcd(841, 160) = 1. Its inverse is 205, since

160 · 205− 1 = 32800− 1 = 32799 = 39 · 841.

Maxima can compute the inverse of n modulo m directly with the command inv mod:

(%i3) inv_mod(160,841);

(%o3) 205

The properties of modular arithmetic are similar to those of integer arithmetic. To name a few
(see [1], Chapter 5):

1. a ≡ a (mod m), for all a ∈ Z.

2. a ≡ b (mod m) if and only if b ≡ a (mod m), for all a, b ∈ Z.

3. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m), for all a, b, c ∈ Z.

4. If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m) and a · c ≡ b · d (mod m),
for all a, b, c, d ∈ Z.

5. If a ≡ b (mod m), then if a ≡ b (mod d) for each divisor of m, d.

6. If a ≡ b (mod m), and a ≡ b (mod n), with m,n coprimes, then a ≡ b (mod m · n).

We now recall a classical result (see [1], Chapter 5). Fermat’s Little Theorem says that if p is a
prime number, then for any integer a we have

ap ≡ a (mod p),

and, for every integer a not divisible by p:

ap−1 ≡ 1 (mod p). (1)

An immediate consequence is the following. If a is not divisible by p and n ≡ m (mod (p− 1)), then

an ≡ am (mod p).

Example 4 Let us find the last digit of 21000000 when written in base 7. This is just the remainder
of 21000000 modulo 7. In order to apply the result above, we must reduce the exponent. If we take
p = 7, n = 1000000, we must find a suitable m such that 1000000 ≡ m (mod 6). Since 1000000 =
166666 · 6 + 4, this means that we can take m = 4. Applying now the corollary to Fermat’s Little
Theorem, we find

21000000 ≡ 24 = 16 ≡ 2 (mod 7).

Thus, the last digit of 21000000 when written in base 7 is 2.

37



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

2.2 The Chinese remainder theorem
The original form of the theorem, appearing in a book written by the Chinese mathematician Qin
Jiushao and published in 1247, is a result related to systems of congruences. It is possible to find a
precedent in the Sunzi suanjing, a book from the third century written by Sun Zi:

Han Xing asks how many soldiers are in his army. If you let them parade in rows of 3
soldiers, two soldiers will be left. If you let them parade in rows of 5, 3 will be left, and
in rows of 7, 2 will be left. How many soldiers are there?.

The modern formulation of the problem is the following. Let m1,m2, ...,mk be integers that are
greater than one and pairwise coprime, and let a1, a2, ..., ak be any integers. Then there exists an
integer x such that x ≡ ai (mod mi) for each i ∈ {1, 2, ..., k}. Furthermore, for any other integer y
that satisfies all the congruences, y ≡ x (mod M) where M = m1 · · ·mk. Note that there is only one
solution in {0, 1, ...,M}.

The proof of the theorem (which can be found in Theorem 5.26 of [1]) gives an algorithm to find
x. The following code implements it in Maxima (it returns the lowest positive solution modulo M ):

Beginning of code

chinese_remainder(a,k):=
block([K,L,x],

K:makelist(apply("*",delete(k[i],k)),i,1,length(k)),
L:makelist(first(gcdex(K[i],k[i])),i,1,length(k)),
x:mod(sum(a[i]*K[i]*L[i],i,1,length(k)),apply("*",k)),
x

);
End of code

To use it, just write chinese remainder([a1,...,ar],[m1,...,mr]). For the Han
Xing’s example:

(%i4) chinese_remainder([2,3,2],[3,5,7]);

(%o4) 23

A small army, indeed. Surely, this is one example in which the solution is not the one in {0, 1, ...,M}
(as in this case Han Xing would have not needed to ask for the number of soldiers, being easy to count
them by himself), but one of the infinite numbers congruent with 23 modulo M = 7 · 5 · 3 = 105, that
is: 128, 233, etcetera.

2.3 Euler’s theorem
Consider Example 4 again. What if we are asked for the last digit in base 77?. We can not apply
Fermat’s theorem here, because 77 is composite. Euler found a generalization of Fermat’s theorem to
this case, introducing his totient function ϕ(n) (which gives the number of positive integers less than

38



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

or equal to n that are coprime to n).

In Maxima we have the command totient:

(%i5) totient(77);

(%5) 60

Now, Euler’s theorem says that for every a ∈ Z:

aϕ(n) ≡ 1 (mod n).

Example 5 Let us compute the last digit of 21000000 in base 77. As ϕ(77) = 60, we know that
260 ≡ 1 (mod 77). As 1000000 = 16666 · 60 + 40, then 21000000 ≡ 240 (mod 77). Now, it is easy to
compute 240 (mod 77). For instance

210 = 1024 = 13 · 77 + 23 ≡ 23 (mod 77),

and 240 = 210·4 = 234 ≡ 23 (mod 77). Thus, the last digit of 21000000 in base 77 is 3.

2.4 The Maxima function power mod

As we have seen in Example 5, a basic computation one often encounters in modular arithmetic is
the modular exponentiation when both the exponent and the modulus are very large. As mentioned,
the Chinese remainder theorem or the Euler’s theorem can be of some help to compute modular ex-
ponentiation. Nevertheless, there is in Maxima a simple way to compute such exponentiation without
using these results.

The modular power function power mod(a,b,c) gives exactly the result of ab (mod c) for
b > 0:

(%i6) power_mod(2,40,77);

(%o6) 23

However, power mod is much more efficient than the Chinese remainder or Euler’s theorems,
because it avoids generating the full form of ab. The algorithm to compute modular exponentiation
follows the repeated squaring method: Instead of repeated multiplication of a by itself, what this al-
gorithm does is to reduce any partial result modulo c, immediately after a multiplication is performed.
In that way we never encounter any integers greater than c2 (see [8] for details on this method). In our
implementation of the RSA cryptosystem we will use the power mod function, and so, the repeated
squaring method implicitly.

39



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

3 The RSA cryptosystem

3.1 Caesar cipher
The first documented cryptosystem is very simple. It just replaces each letter in the plain text with
the one sitting three positions down the alphabet, for example, we would replace A by D, B by E, and
so on (the last three letters, X, Y, Z, are replaced by A, B, C, respectively). It seems that this method
was used by Julius Caesar to send military instructions to his generals.

This idea can be translated to numbers, for an easier use. If we replace each letter of the alphabet
by a natural number (adding the space between words character) as in

a b c d e f g h i j k l · · · r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 · · · 18 19 20 21 22 23 24 25 26

then the encryption function is simply

f(x) = x + 3 (mod 27),

while the decryption function is, obviously, the inverse:

g(x) = f−1(x) = x− 3 (mod 27).

These simple properties make the Caesar cipher very easy to use. However, they are also the origin of
its weakness. To break a cryptosystem means to deduce the encryption/decryption functions from a
sample of ciphertext (the encrypted message); in this case, the method of attack is a simple frequency
analysis of word repetitions (in English, for instance, the most repeated number corresponds to the
most used letter, the e, the second is the t, and so on).

Several schemes were devised to improve the Caesar cipher. For instance, one could try more
complicated bijections, such as

f(x) = a · x + b (mod 27),

with a an integer such that gcd(a, 27) = 1, and a, b ∈ {1, 2, ..., 26}. Another possibility consists
in taking groups of contiguous letters, instead of one by one; for example, digraphs (groups of two
letters) or trigraphs (groups of three letters). In this case, an encryption function could have the form

f(x) = a · x + b (mod m),

where a, b ∈ {1, 2, ...,m − 1} and m is a number big enough to allow for the enumeration (in a
one-to-one and onto manner) of every possible combination of three characters. Both parameters, a
and m, are necessary for the encryption as well as the decryption processes, and are called the key of
the cryptosystem.

Anyway, these systems are too weak to be used in practice. They can be broken in a number of
ways, very easily with the use of a modern computer. We have cited them here just for the sake of
illustration of the concepts involved.

40



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

3.2 Public key cryptosystems
A revolution happened when the so called public key cryptosystems appeared, in the late seventies.
These systems are based on the following fact: there are bijective (one-to-one and onto) functions for
which the calculation of the inverse is very difficult, computationally impossible. Then, we can make
publicly available the keys used to encrypt messages whenever the keys used for decryption are to be
found by one of these functions. One example is the factorization of a given number into a product of
primes, and this fact is the foundation of the RSA method (see [7]).

In a public key cryptosystem, each user has a public key, that is, an encryption function fpub, and
a private key, a decryption function fpri, which are inverses one of another: fpri = f−1

pub. Thus, if
a user A wants to send a message (say, “text”, translated to numbers as in the preceding section to
“2052420”) to a user B, she must look in the public keys listing the one corresponding to B (say,
fB
pub), apply it to the message (obtaining fB

pub(2052420)), and send it to B. Even in the unfortunate
event that someone intercepts the ciphered text, only B knows the decryption function. Indeed, user
B can read the original message by just applying fB

pri =
(
fB
pub

)−1 to fB
pub(2052420); thus:

fB
pri

(
fB
pub(2052420)

)
=

(
fB
pub

)−1 (
fB
pub(2052420)

)
= 2052420.

3.3 The RSA algorithm
As stated in the preceding subsection, to implement the RSA cryptosystem we only need to give the
pair of functions (fpub, fpri) for each user, A, of the system. The procedure is the following:

1. User A chooses two large prime numbers, pA and qA.

2. Calculate the product nA = pA · qA.

3. Evaluate the totient function2 on nA, Φ(nA)

4. Choose a number eA ∈ {1, 2, ...,Φ(nA)}, coprime with Φ(nA).

With these choices, gcd(eA,Φ(nA)) = 1, so eA is an invertible element of the ring Z/Φ(nA)Z. Let
dA be an integer such that its equivalence class is the inverse of that of eA, that is,

eA · dA ≡ 1 (mod Φ(nA)).

5. The encryption function, fA
pub : Z/nAZ→ Z/nAZ, is given by

fA
pub(m) = meA (mod nA).

2Note that in this case, with nA semiprime (that is, the product of two primes), we have

Φ(nA) = (pA − 1) · (qA − 1) = nA − pA − qA − 1.

41



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

6. The decryption function, fA
pri, is the inverse of fA

pub, that is:

fA
pri(m) = mdA (mod nA).

It is instructive to check that these functions are indeed inverses of each other.

Theorem 6 For every m ∈ Z/nAZ,

fA
pri(f

A
pub(m)) ≡ fA

pri(m
eA) ≡ meA·dA ≡ m (mod nA).

Proof. For simplicity, we will drop the subscripts A. We can assume that m is not divisible3 by p.
Then, by Fermat’s Little Theorem (1),

mp−1 ≡ 1 (mod p).

Let us take the power of q − 1 on both sides of this equation:

m(p−1)·(q−1) =
(
mp−1

)q−1 ≡ 1q−1 = 1 (mod p).

A similar computation, interchanging p and q, gives

m(p−1)·(q−1) =
(
mq−1

)p−1 ≡ 1p−1 = 1 (mod q).

We can apply the property 6 of modular arithmetic, to get

m(p−1)·(q−1) = 1 (mod pq).

Note that for any integer k we will also have

mk·(p−1)·(q−1) =
(
m(p−1)·(q−1)

)k ≡ 1k = 1 (mod pq).

Now, recall that e · d ≡ 1 (mod Φ(n) = (p− 1) · (q − 1)). That means

e · d = 1 + k · (p− 1) · (q − 1).

Thus:
me·d = m1+k·(p−1)·(q−1) = m ·mk·(p−1)·(q−1) ≡ m · 1 = m (mod pq),

so me·d ≡ m (mod n), as we intended to prove.
Why is this method secure?. In the RSA cryptosystem, the public key of user A is the pair of

integers (eA, nA), while her private key is the pair (dA, nA). To find the private key knowing the
public key is equivalent to computing the integer dA knowing eA and nA. Thus, if we want to break
the cryptosystem, we must first calculate Φ(nA) = (pA− 1)(qA− 1), that is, we must factor nA as the
product of two primes. This is an extremely difficult problem from the computational point of view;
indeed, a joint effort of several researchers using hundreds of dedicated computers only could factor
a 232−digit number after two years of computation (see [3]). Note that this number corresponds to
a 768−bit encryption, the problem of factoring a 1024−bit key is a thousand times harder! Thus,
although breaking the RSA cryptosystem is theoretically possible, it is practically impossible with
our current state of knowledge.

3That p divide m is highly improbable, given the magnitude order of the prime p.

42



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

3.4 Implementation in Maxima CAS
The following function generates a list (e, n, d) suitable for use in the RSA algorithm.

Beginning of code

(
load(distrib)
);

generate_random_key(l):=
block([p,q,n,r,e,d,K],
p:next_prime(floor(float(random_continuous_uniform(2ˆl,2ˆ(l+1))))),
q:next_prime(floor(float(random_continuous_uniform(2ˆl,2ˆ(l+1))))),
n:p*q,
r:(p-1)*(q-1),
e:next_prime(floor(float(random(floor(r/2))))),
d:inv_mod(e,r),
K:[e,n,d],
K
);

End of code

To use it write generate random key(l) where l determines the number of digits of the
integers e, n, d (they will be pseudo-randomly generated between 2l and 2l+1). A suggested value
(to speed up computations while keeping practical interest for applications) is l = 125. Note that
the construction of e is based on the obvious consequence of the Prime Number Theorem4 that the
number of primes between r/2 and r (for large r) is approximately r/log(r/2), so these are relatively
abundant.
For example:

(%i7) key:generate_random_key(125);

(%o7) [671258217454686505293403265373669737061769832160804966205145423006710890659,
6524380046621073928456206976859918286968722163998541593398840097117692758107,
4117416708352497196549341588732382167090260042357291528574523538009688319619]

Once we have the list (e, n, d) as the output of generate random key, we can create our public
key (e, n):

(%i8) public_key:rest(key,-1);

(%o8) [671258217454686505293403265373669737061769832160804966205145423006710890659,

4Let π(x) be the function giving the number of primes less than or equal to x. Then, the Prime Number Theorem says
that

lim
x→+∞

π(x)

x/ln(x)
= 1.

43



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

6524380046621073928456206976859918286968722163998541593398840097117692758107]

and our private key (d, n):

(%i9) private_key:reverse(rest(key,1));

(%o9) [4117416708352497196549341588732382167090260042357291528574523538009688319619,
6524380046621073928456206976859918286968722163998541593398840097117692758107]

The next function rsa encrypt reads a text from a file and encrypts it in blocks of length k.

Beginning of code

(
load(stringproc)
);

file_to_string(u):=
block([a,i:0,text_string,tmp],

a:openr(u),
while stringp(tmp[i]:readline(a)) do i:i+1,
text_string:simplode(makelist(tmp[j],j,0,i-1)," "),
text_string

);

rsa_encrypt_console(s,k,P):=
block([tmp,added_char,encrypted_text,encrypted_text_added],
local(fill_string,string_to_number,rsa_encode),
tmp:smake(k-(slength(s)-k*floor(slength(s)/k)),ascii(126)),
added_char:[slength(tmp)],
fill_string(s,k):=concat(s,tmp),
string_to_number(s):=sum(

(cint(charat(s,i))-32)*95ˆ(i-1),i,1,slength(s)
),

rsa_encode(a,b,c):=power_mod(a,b,c),
encrypted_text:makelist(

rsa_encode(
string_to_number(
substring(fill_string(s,k), 1+k*(i-1), 1+k*i)
),P[1],P[2]
), i, 1, slength(fill_string(s,k))/k

),
encrypted_text_added:append(added_char,encrypted_text)

);

rsa_encrypt_file(s,k,P,p):=
block([LL],

LL:rsa_encrypt_console(s,k,P),

44



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

stringout(p,LL)
);

rsa_encrypt(q,k,P,[p]):=
block([t],

t:file_to_string(q),
if p=[] then rsa_encrypt_console(t,k,P)
else rsa_encrypt_file(t,k,P,first(p))

);
End of code

The result can be shown in the console or, if a path to a file is given, written to that file. For the
purpose of this example, we have stored the following text in /root/hysteria.txt:

As she laughed I was aware of becoming involved in her laughter and being part of it,
until her teeth were only accidental stars with a talent for squad-drill. I was drawn in by
short gasps, inhaled at each momentary recovery, lost finally in the dark caverns of her
throat, bruised by the ripple of unseen muscles. An elderly waiter with trembling hands
was hurriedly spreading a pink and white checked cloth over the rusty green iron table,
saying: ”If the lady and gentleman wish to take their tea in the garden, if the lady and
gentleman wish to take their tea in the garden ...” I decided that if the shaking of her
breasts could be stopped, some of the fragments of the afternoon might be collected, and
I concentrated my attention with careful subtlety to this end.

We can encrypt the text in blocks of length5 k = 20 with the following commands (the output is
suppressed because of its length):

(%i10) load(rsa_encrypt)$

(%i11) rsa_encrypt("/root/hysteria.txt",20,public_key);

Or we can redirect the output to a file, in this example /root/hysteria-encrypted.txt:

(%i12) rsa_encrypt("/root/hysteria.txt",20,public_key,
"/root/hysteria-encrypted.txt");

(%o12) /root/hysteria− encrypted.txt

The function given below, rsa decrypt, reads encrypted text from a file and decrypts it.

Beginning of code

(
load(basic)
);

5Here, the particular value k = 20 is chosen just as an example. In Section 5, k = 3 is taken instead. What one should
keep in mind when choosing the value of k is that the numerical representation of each block must have a value less than
the modulus if the message is to be decrypted successfully.

45



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

rsa_decrypt_console(M,k,Q):=
block([clean_message],local(number_to_string,rsa_decode),

number_to_string(z,k):=makelist(
ascii(mod(floor(z/(95ˆ(i-1))),95)+32),i,1,k
),
rsa_decode(a,b,c):=power_mod(a,b,c),
clean_message:simplode(
makelist(
simplode(
number_to_string(
rsa_decode(M[i],Q[1],Q[2]),k
)
)

,i,1,length(M))
),
clean_message

);

rsa_decrypt(s,k,Q,[p]):=
block([prelist,AA,BB,len],

prelist:read_list(s,comma),
AA:rest(rest(prelist,-2),1),
BB:pop(AA),
len:slength(rsa_decrypt_console(AA,k,Q)),
if p=[] then
substring(rsa_decrypt_console(AA,k,Q),1,len-(BB-1))
else
stringout(
first(p),substring(
rsa_decrypt_console(AA,k,Q),1,len-(BB-1)
)
)

);
End of code

Again, the function can show the clean text in the console or, if a path to a file is given, to store
the decrypted text in that file. In the example, we decode the text that was previously encrypted and
stored in /root/hysteria-encrypted.txt. Note also that the length of the blocks (k = 20)
is passed as an argument:

(%i13) rsa_decrypt("/root/hysteria-encrypted.txt",20,private_key);

(%o13) As she laughed I was aware of becoming involved in her laughter and being part of it, until
her teeth were only accidental stars with a talent for squad-drill. I was drawn in by short gasps, in-
haled at each momentary recovery, lost finally in the dark caverns of her throat, bruised by the ripple
of unseen muscles. An elderly waiter with trembling hands was hurriedly spreading a pink and white
checked cloth over the rusty green iron table, saying: ”If the lady and gentleman wish to take their

46



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

tea in the garden, if the lady and gentleman wish to take their tea in the garden ...” I decided that if the
shaking of her breasts could be stopped, some of the fragments of the afternoon might be collected,
and I concentrated my attention with careful subtlety to this end.

To redirect the output to a file, we give the path to that file, as in:

(%i14) rsa_decrypt("/root/hysteria-encrypted.txt",20,
private_key,"/root/hysteria-decrypted.txt");

(%o14) /root/hysteria− decrypted.txt

4 Digital signatures
Although the RSA cryptosystem, as described in the preceding sections, has some nice properties (it
is reliable and secure), it also has a serious drawback: it does not provide any method to check the
authenticity of the message; in other words, we do not know if the person claiming to be the sender of
the message is actually that person, as the recipient gets the message encrypted with his own public
key, which is available to everybody.

However, using the same ideas of the RSA method, a solution to this problem can be given. It
consists in the following: the sender (user A) signs the message in such a way that anybody (for
instance, the receiver, user B) can deduce that only A is able to produce that signature. To implement
this “digital signature”, a possible method6 follows these steps: user A adds to the message she wants
to send (say text) her signature, another piece of text such as I am user A, that identifies her, encrypted
with her private key, to get text + fA

pri(I am user A). Then, the sender (user A) encrypts the result
with the public key of the recipient B, fB

pub(text + fA
pri(I am user A)). When user B decrypts the

message, he will find two pieces, the message text and the encrypted chunk fA
pri(I am user A). To be

sure that the message actually comes from A, all he has to do is to apply her public key to it, as the
result is then

fA
pub(f

A
pri(I am user A)) = I am user A.

Note that the idea behind the digital signature is that only A is able to produce a text such that, when
applying fA

pub, the result is legible.
The following function, rsa encrypt ds, is a slight modification of rsa encrypt capable

of including a signature. It takes a file with path a containing some text to encrypt, an integer k (the
chunk length), a list P = [e, n] (the public key of the recipient, user B), a list Q = [d, n] (the private
key of the sender, user A), a path q to a file storing a signature, and, optionally, a path p to a file where
the output is written as its arguments. When p is absent, the output is written in the Maxima console.

Beginning of code

load("stringproc");

6The procedure we describe here is not the one used in an actual situation, where A first gets a digest of the message,
with a certain hash function such as MD5, and then encrypt this digest with her own private key. But the example we
describe retains the basic idea while being far more easy to implement.

47



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

load("basic");

file_to_string(u):=
block([a,i:0,tmp,text_string],

a:openr(u),
while stringp(tmp[i]:readline(a)) do i:i+1,
text_string:simplode(makelist(tmp[j],j,0,i-1)," "),
text_string

);

rsa_encrypt_console(s,k,P):=
block([tmp,added_char,encrypted_text,encrypted_text_added],
local(fill_string,string_to_number,rsa_encode),
tmp:smake(k-(slength(s)-k*floor(slength(s)/k)),ascii(126)),
added_char:[slength(tmp)],
fill_string(s,k):=concat(s,tmp),
string_to_number(s):=sum((cint(charat(s,i))-32)*95ˆ(i-1),i,1,slength(s)),
rsa_encode(a,b,c):=power_mod(a,b,c),
encrypted_text:makelist(

rsa_encode(
string_to_number(
substring(fill_string(s,k), 1+k*(i-1), 1+k*i)

),P[1],P[2]
), i, 1, slength(fill_string(s,k))/k
),

encrypted_text_added:append(added_char,encrypted_text)
);

rsa_encrypt_ds(a,k,P,Q,q,[p]):=
block([t,v,L,M,l,m,S],

t:file_to_string(a),
v:file_to_string(q),
L:rsa_encrypt_console(t,k,P),
M:rsa_encrypt_console(v,k,Q),
l:length(L),
m:length(M),
S:[l,m,L,M],
if p=[] then S
else stringout(first(p),S)

);

End of code

To use this function, we prepare a file /root/signature.txt, with the following content:

T. S. Eliot
Prufrock and Other Observations
1917

48



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

Then we can make the following to encrypt and sign the file /root/hysteria.txt using the
following public-private keys for users A and B:

(%i15) public_keyA;

(%o15) [1650059172879816791260876129953328603907602666352067869083685909461393736909,
3708150289863286994535783817852033198889096484604423097296248436592325166991]

(%i16) private_keyA;

(%o16) [379527932593144827812732692164393824004791535303438931019254825655253733685,
3708150289863286994535783817852033198889096484604423097296248436592325166991]

(%i17) public_keyB;

(%o17) [146879466713946901827530582303760087656241476871443053164266198403926458463,
3040216715027414087962274325454256602848802215847097074502322427275375547837]

(%i18) private_keyB;

(%o18) [2843378208968070601455100396976753790872008736270032956043745072607798170907,
3040216715027414087962274325454256602848802215847097074502322427275375547837]

(%i19) rsa_encrypt_ds("/root/hysteria.txt",20,public_keyB,
private_keyA,"/root/signature.txt")$

(The output here was suppressed, it can be seen at http://galia.fc.uaslp.mx/˜jvallejo/
Software.html). Or, we can redirect the output to a file, as before. In this example, the file is
/root/hysteria-signed.txt:

(%i20) rsa_encrypt_ds("/root/hysteria.txt",20,public_keyB,
private_keyA,"/root/signature.txt",
"/root/hysteria-signed.txt");

(%o20) /root/hysteria− signed.txt

To decrypt the file and the signature, we have the following function, rsa decrypt ds:

Beginning of code

(
load(stringproc)
);

rsa_decrypt_console(M,k,T):=
block([clean_message],local(number_to_string,rsa_decode),

number_to_string(z,k):=makelist(
ascii(mod(floor(z/(95ˆ(i-1))),95)+32),i,1,k
),

rsa_decode(a,b,c):=power_mod(a,b,c),

49

http://galia.fc.uaslp.mx/~jvallejo/Software.html
http://galia.fc.uaslp.mx/~jvallejo/Software.html


The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

clean_message:simplode(
makelist(simplode
(number_to_string(rsa_decode(M[i],T[1],T[2]),k)),i,1,length(M)
)
),
clean_message

);

rsa_decrypt_ds(s,k,y,z,[p]):=
block([prelist,ML,SL,BB,CC,lenm,lens],
prelist:read_list(s,comma),
ML:rest(rest(prelist,-prelist[3]-5),4),
SL:rest(rest(prelist,-3),prelist[2]+6),
BB:pop(ML),
CC:pop(SL),
lenm:slength(rsa_decrypt_console(ML,k,z)),
lens:slength(rsa_decrypt_console(SL,k,y)),
if p=[] then
simplode([substring(rsa_decrypt_console(ML,k,z),1,lenm-(BB-1)),"
--- Signature begins ---
",substring(rsa_decrypt_console(SL,k,y),1,lens-(CC-1))]," ")
else
stringout(
first(p), simplode([substring(rsa_decrypt_console(ML,k,z),1,lenm-(BB-1)
),"
--- Signature begins ---
",substring(rsa_decrypt_console(SL,k,y),1,lens-(CC-1))]," "))
);

End of code

Applying it to the output of the function rsa encrypt ds, we have:

(%i21) rsa_decrypt_ds("/root/hysteria-signed.txt",20,
public_keyA,private_keyB);

(%o21) As she laughed I was aware of becoming involved in her laughter and being part of it, until
her teeth were only accidental stars with a talent for squad-drill. I was drawn in by short gasps,
inhaled at each momentary recovery, lost finally in the dark caverns of her throat, bruised by the
ripple of unseen muscles. An elderly waiter with trembling hands was hurriedly spreading a pink and
white checked cloth over the rusty green iron table, saying: ”If the lady and gentleman wish to take
their tea in the garden, if the lady and gentleman wish to take their tea in the garden ...” I decided
that if the shaking of her breasts could be stopped, some of the fragments of the afternoon might be
collected, and I concentrated my attention with careful subtlety to this end. — Signature begins — T.
S. Eliot Prufrock and Other Observations 1917

Of course, we can redirect the output to a file, instead than the console:

50



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

(%i22) rsa_decrypt_ds("/root/hysteria-signed.txt",20,public_keyA,
private_keyB,"hysteria-signed-decrypted.txt");

(%o22) /root/hysteria− signed− decrypted.txt

Note that in order to get the text in the file /root/hysteria-signed-decrypted.txt
nicely formatted, one has to write the code above for rsa encrypt ds with the appropriate new
line breaks and long line expressions, as it contains some string arguments in simplode that will
be written “as they are”; the version appearing here does not have these features to fit within the page
width.

5 Working at the classroom
When working out examples with the students at the classroom, the teacher can produce a message,
sign it and send it encrypted to the students for decrypting it. To do this efficiently, it is a good
idea to have a file with the names of the students ordered (following any criteria), and another one
where their public keys are stored with the same ordering. In this way, the teacher can send the same
message to different students, digitally signed with his own private key, but encrypted with the public
key corresponding to each student.

Suppose for example that we have seven students: Cordelia, Curan, Edmund, Fool, Goneril, Lear,
and Regan. We create a text file with each name in one line, alphabetically ordered, and store it at
/root/students.txt. Also, we let the students create their own public-private keys, and ask
them to hand us the public pairs. All these public pairs are written on another text file, each pair e, n
in one line (separated by commas). For instance, we could have:

1119871,3560093
623521,2735539
745231,2543987

1321063,3038941
140759,1981211

1019747,2155823
609043,2827757

We store the file at /root/public-keys.txt. For later use, note that the public key of the
fourth student, Fool, is [1321063, 3038941]. Actually, his private one is [734395, 3038941] (both were
generated with generate random key(10)).
The teacher wants to send an encrypted message, contained in the file /root/KingLear.txt.
His own digital signature:

The teacher
William Shakespeare
King Lear

is contained in another file, /root/digsig.txt. Finally, the public-private keys of the teacher
are:

51



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

(%i23) teacher_public;

(%o23) [429881, 2294543]

(%i24) teacher_private;

(%o24) [872729, 2294543]

With these data, the following function rsa encrypt group signs the message with the teacher’s
signature, encrypts the signature with the teacher’s private key, the whole message with each student’s
public key and generates a file with the name of the student containing the encrypted message, stored
in a path given by the user (in the example, /root/messages/). Note also the k value for the text
chunks (k = 3 in the example).

Beginning of code

(
load(numericalio)
);

rsa_encrypt_group(s,k,t,u,r,Q,q):=
block([students,publickeys,name,path],
students:read_list(t),
publickeys:read_nested_list(u,comma),
for j:1 thru length(students) do
(name:students[j],
path:simplode([r,string(name),".txt"]),
rsa_encrypt_ds(s,k,publickeys[j],Q,q,path)

)
);

End of code

(%i25) rsa_encrypt_group("/root/KingLear.txt",3,
"/root/students.txt","/root/public-keys.txt",
"/root/messages/",teacher_private,"/root/digsig.txt");

(%o25) done

Now, we have seven files in /root/messages/. These are: Cordelia.txt, Curan.txt,
Edmund.txt, Fool.txt, Goneril.txt, Lear.txt, and Regan.txt. Suppose that the
teacher sends each one to its corresponding recipient. When Fool receives his message, he can decrypt
it using the function rsa decrypt ds of the preceding section, as he knows the teacher’s public
key (to decipher the signature) and his own private key (to decipher the message):

(%i26) rsa_decrypt_ds("/root/messages/Fool.txt",3,
teacher_public,[734395,3038941]);

52



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

(%o26) This is the excellent foppery of the world, that, when we are sick in fortune,–often the surfeit
of our own behavior,–we make guilty of our disasters the sun, the moon, and the stars: as if we were
villains by necessity; fools by heavenly compulsion; knaves, thieves, and treachers, by spherical pre-
dominance; drunkards, liars, and adulterers, by an enforced obedience of planetary influence; and
all that we are evil in, by a divine thrusting on: an admirable evasion of whoremaster man, to lay his
goatish disposition to the charge of a star! — Signature begins — The teacher William Shakespeare
King Lear

6 Acknowledgements
JM has been partially supported by a Spanish Ministry of Science and Innovation grant MTM2009-
08933. JAV was supported by a CONACyT grant CB-J2-2007 code 78791.

References
[1] T. Apostol: Introduction to analytic number theory. Springer Verlag, New York (1976).

[2] G. A. Jones, and J. M. Jones: Elementary Number Theory. Springer Verlag, London (1998).

[3] T. Kleinjung et al.: Factorization of a 768−bit RSA modulus, version 1.4, February 18 (2010).
Available on-line at http://eprint.iacr.org/2010/006.pdf.

[4] Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.24.0 (2011).
http://maxima.sourceforge.net.

[5] A. McAndrew: Teaching cryptography with open-source software. SIGCSE Bull. 40 1 (2008)
325− 329.

[6] A. McAndrew: Introduction to Cryptography with Open-Source Software. CRC Press, Boca
Ratón (2011).

[7] R. Rivest, A. Shamir; L. Adleman: A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM 21 2 (1978) 120− 126.

[8] B. Schneier: Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd ed.).
Wiley (1996).

53

http://eprint.iacr.org/2010/006.pdf
http://maxima.sourceforge.net
http://maxima.sourceforge.net

	Introduction
	Algebraic preliminaries
	Modular arithmetic
	The Chinese remainder theorem
	Euler's theorem
	The Maxima function power_mod

	The RSA cryptosystem
	Caesar cipher
	Public key cryptosystems
	The RSA algorithm
	Implementation in Maxima CAS

	Digital signatures
	Working at the classroom
	Acknowledgements

