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Abstract
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Batalin–Vilkoviski master equation is also given.
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1. Introduction

It is well known that given a classical manifold M, which represents the configuration space
of a physical system, the canonical symplectic structure of the cotangent bundle allows one to
develop the Hamiltonian dynamics of that system in a very concise way. A similar approach
can be followed in the case of the Lagrangian theory, which can be formulated on the tangent
bundle of the configuration manifold constructing on it a symplectic form which, however, is
not canonical and depends directly on the Lagrangian chosen to describe the system.

This classical theory of dynamical systems can be generalized in many ways. One of
them includes anticommuting variables, which are suitable to describe quantum effects such as
spin; in this direction, there has been previous work studying graded (or ‘super’) Hamiltonian
mechanics, calculus of variations, etc (see, for example, [Mon 92, Ibo-Mar 93, Car-Fig 97,
Mon-Muñ 02 or the recent book [Del 99]). The ‘golden rule’ of generalizations to the graded
case establishes that commuting and anticommuting variables must be treated in exactly the
same way, but in the majority of the literature we find an asymmetry when dealing with the
evolution parameter, which is always taken to be the ‘bosonic’ time t, with no ‘fermionic’
counterpart. This is stressed in [Mon 92], where a graded Hamiltonian theory is developed
taking into account the supermanifold R

1|1 as the space for the evolution parameters (s, t)

with s being an anticommuting variable. The reasons for this choice are not only aesthetic, but
have strong mathematical support: as proved in [Mon-Sán 93], this is necessary if we want to
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integrate arbitrary graded vector fields, that is, to describe arbitrary graded systems (see also
[Sha 80]).

Thus, our translation of the aforementioned ‘golden rule’, is the replacement of the
classical parameter space R ≡ R

1|0 by R
1|1. This procedure is not new in physics, where the

use of R
1|1 goes under the name ‘(1, 1)-superspace’. Even the most simple models based on it

have found interesting applications: as early as in 1982, Witten (see [Wit 82]) suggested that the
index formula could be understood in terms of a suitable quantum mechanical supersymmetric
system, in which the parameter space is given by a pair (t, θ) with t being bosonic and θ

fermionic (our (t, s)). His insight has been developed ever since in a lot of papers, among
them we could cite [Alv 83, Fri-Win 84]. In the book by Freed [Fre 99] it is used to construct
a quantization model for the superparticle (a detailed account can be consulted in [Del 99],
pp 478 and ff), and also a justification for the need for the introduction of R

1|1 is given (see
pp 40–41 in [Fre 99]).

In accordance with these ideas, we develop a graded Lagrangian theory (which can be
viewed as complementary to the Hamiltonian one of [Mon-Muñ 02]) in the following steps:
starting from the graded bundle R

1|1 × (M,A)
π−→ R

1|1, and the corresponding bundle of
graded 1-sections, denoted by J 1

G(π), we take a graded Lagrangian L defined on it (thus
depending on coordinates {t, s, xa, xa

t , xa
s }), construct a certain graded 1-form associated with

L (the Poincaré–Cartan 1-form) and then pass to J 2
G(π) with the use of LG

d
ds

, the graded Lie

derivative with respect to the horizontal lift of ∂
∂s

. The Poincaré–Cartan 1-form will allow us
to construct a graded symplectic 2-form which projects onto a suitable sub-bundle, the space
of solutions (with coordinates {t, s, xa, xa

t , xa
s , xa

ts}). The resulting form, �L, is such that the
integral curves of its graded Hamiltonian vector fields give the solutions to the Euler–Lagrange
superequations.

As an application, we give a method for constructing a class of solutions of the master
equation of the Batalin–Vilkoviski formalism in the context of particle supermechanics. There
has been previous work in this direction, mainly by Däyi (see [Day 88, Day 93]), who uses an
‘odd time’ formulation. His results are based (in our notation) upon R

0|1, but we insist on the
naturality of the R

1|1 formalism.
Throughout this paper, we will freely interchange the prefixes ‘super-’ and ‘graded’.

2. Preliminaries

For generalities on graded manifolds, see [Kos 77].

2.1. Graded manifolds and curves on them

On a graded manifold (M,A), of graded dimension (m, n) and structural sheaf of graded
commutative algebras A, positive indices are used for even coordinates: xi, i = 1, . . . ,m, and
negative indices for odd coordinates: xi, i = −n, . . . ,−1. The index is just a label, and for
ease of writing we will place it as a subscript or a superscript. The natural homomorphism is
denoted by A → C∞

M , f �→ f̃ . Nevertheless, the coordinates of the graded manifold R
1|1—

with base manifold R and graded ring R1|1—are denoted by =(t, s), with |t| = 0, |s| = 1; i.e,
R1|1 = {f (t) + g(t)s : f, g ∈ C∞(R)}. In the category of graded manifolds, R

1|1 plays the
same role as R in the category of differentiable manifolds.

Recall that a homogeneous endomorphism D ∈ End(A) is a graded derivation if it
verifies the graded Leibniz rule:

D(fg) = D(f )g + (−1)|D||f |fD(g)
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where |D| is its degree, that is, D(Aα) ⊂ Aα+|D|. A fundamental result is that the space
of such derivations, Der(A), has the structure of graded Lie algebra when endowed with
the restriction of the usual bracket of endomorphisms [., .]: End(A) × End(A) →End(A),
given by

[F,G] = F ◦ G − (−1)|F ||G|G ◦ F. (2.1)

The elements of Der(A) are the graded vector fields of (M,A) ( just as X (N) =
Der(C∞(N)) in a usual manifold N). As in the non-graded case, the dual gives the graded
differential forms:

�G(M) =
∑
p∈N

�
p

G(M) where �
p

G(M) = �p(Der∗(A)).

Each �
p

G(M) itself is a graded A-module, and several morphisms on �G(M) can be defined
as usual (see [Kos 77]): the graded exterior differential dG, the insertion of a D ∈ Der(A) ιD,
etc. On the bigraded A-module EndA(�G(M)), we can introduce a commutator analogous
to (2.1), now taking into account the bigrading: if F has bidegree (f1, f2) and G has bidegree
(g1, g2), we define

[F,G] = F ◦ G − (−1)f1g1+f2g2G ◦ F

and this is a new element of EndA(�G(M)) with bidegree (f1 + g1, f2 + g2). If D ∈ Der(A),
then the graded Lie derivative LG

D is defined by

LG
D = [ιD, dG] = ιD ◦ dG + dG ◦ ιD.

We recall that a classical curve γ : R → M can be seen as a section of p1 : R× M → R.
In the graded case we must substitute R

1|1 for R. Hence a graded curve must be a section
of the graded submersion p1 : R

1|1 × (M,A) → R
1|1 given by the projection onto the first

factor, or equivalently, a morphism of graded manifolds γ : R
1|1 → (M,A).

Example 1. In order to work out an example, let us choose a particular graded manifold.
Let M be a differentiable manifold and let us consider the graded manifold (M,�M),
where �M denotes the sheaf of differential forms on M. Hence dim(M,�M) = (m,m) if
m = dim M . Given a coordinate system {yi}mi=1 on M, we can build up a system of adapted
graded coordinates: {yi, dyi}mi=1. According to our way of denoting graded coordinates,
{xi}, i = −m, . . . ,−1, 1, . . . ,m, we have xi = yi, x−i = dyi, i = 1, . . . ,m. A graded curve
γ : R

1|1 → (M,�M) is determined by a pair of maps γ : R → M,γ ∗ : �(M) → R1|1. Note
that the homomorphism γ ∗ is not necessarily the pull-back map of γ : R → M . We have{

γ ∗(yi) = yi ◦ γ = f i(t)

γ ∗(dyi) = gi(t)s
f i, gi ∈ C∞(R) i = 1, . . . ,m. (2.2)

If γ ∗ is the pull-back of γ : R → M , then gi = (f i)′.

2.2. Graded jet bundles

The usual coordinate description of jet bundles does not work with graded manifolds. A
more intrinsic construction of graded jet bundles, entailing further algebraic formalizations,
is needed. This is done in [Her-Mun 84] and we do not repeat it here. According to this
we will briefly recall the construction for the particular case of the graded 1-jet bundle
J 1(R1|1, (M,A)) of local sections of p1 : R

1|1 × (M,A) → R
1|1; its graded dimension is

(1 + 2m + n, 1 + m + 2n), where (m, n) = dim(M,A). We remark that the base manifold of
J 1(R1|1, (M,A)) is not equal to J 1(R,M). The graded ring of J 1(R1|1, (M,A)) is denoted
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by A1. Also, we denote the graded ring of R
1|1 × (M,A) by A0 as J 0(R1|1, (M,A)) =

R
1|1 × (M,A).

The graded fibred coordinates on first-order jet bundles are defined in [Her-Mun 84,
Her-Mun 85, Mon 92] and denoted by

{
t, s, xi , x

i
t , x

i
s

}
, i = −n, . . . ,−1, 1, . . . ,m: the even

coordinates are t; {xi}mi=1;
{
xi

t

}m

i=1;
{
xi

s

}−1
i=−n

, and the odd ones are s; {xi}−1
i=−n;

{
xi

t

}−1
i=−n

;{
xi

s

}m

i=1.

2.3. Curves and the first-order jet bundle

Let us recall that a variation of a classical curve γ : R → M is a one-parameter family of
curves γ̄t̄ (t) (t̄ ∈ R being the variational parameter) such that γ̄0 = γ . According to our
philosophy of substituting R

1|1 for R, a variation of a graded curve on a graded manifold,
γ : R

1|1 → (M,A), must also be an R
1|1-parameter family of graded curves.

We exclusively consider variations of a curve induced by a graded vector field. In the
classical case, the variations of a curve induced by a vector field are just the composition of
the curve with the integral flow of the vector field. It can be shown that any even graded vector
field can be integrated by simply using an even parameter, but the situation is different in the
odd case.

Let us briefly recall the problem of existence and uniqueness of solutions of first-order
superdifferential equations that have been studied in [Mon-Sán 93]. The first fact to note
is that the parameter space in the graded setting is R

1|1 and that the problem of finding the
integral flow of a graded vector field must be stated in terms of this parameter space. Second,
once we have chosen the parameter space, we must choose a model of graded vector field on
it. It is easy to check that there are three possible graded Lie algebra structures on R

1|1 each
giving rise to a different model of right-invariant graded vector field. For example, for the
additive structure (the one we use in what follows) the model of graded vector field is given
by ∂/∂t + ∂/∂s.

Let X be a graded vector field on the graded manifold (M,A). We say that 	 : R
1|1 ×

(M,A) → (M,A) is the flow of X if together with an initial condition the following equation
holds:

evt=0 ◦
(

∂

∂t
+

∂

∂s

)
◦ 	∗ = evt=0 ◦ 	∗ ◦ X

where evt=0 is the map defined by =evt=0(f (t) + g(t)s) = f (0). In [Mon-Sán 93] it is shown
that any graded vector field can be integrated, in the previous sense, by means of integral
curves parametrized on R

1|1. It is also shown there that if the homogeneous parts X0,X1 of X
satisfy the equations [X0,X1] = [X1,X1] = 0, then the previous equation also holds without
the evaluation map, i.e.,(

∂

∂t
+

∂

∂s

)
◦ 	∗ = 	∗ ◦ X. (2.3)

Moreover the flow induces an action of the additive Lie group structure of R
1|1 on the

supermanifold (M,A) and then a kind of relation like 	t1 , s1 ◦ 	t2,s2 = 	t1+t2,s1+s2 is valid.

Example 2 (cf [Mon-Sán 93]). On the graded manifold (M,�M) the exterior derivative d
is an example of an odd vector field. Its integral flow is given by the map 	 = (	, 	∗) :
R

1|1 × (M,�M) → (M,�M), with 	 = πM : R × M → M and 	∗ : �(M) → AR1|1×(M,�M)
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is given by 	∗(α) = α + s̄ dα, where = t̄ , s̄ are the graded coordinates in R
1|1. Therefore the

variation of a graded curve (2.2), produced by the graded vector field d, is given by

γ ∗ ◦ 	∗(yi) = γ ∗(yi + s̄ dyi) = f i(t) + gi(t)s̄s

γ ∗ ◦ 	∗(dyi) = γ ∗(dyi) = gi(t)s.
i = 1, . . . ,m. (2.4)

Example 3. Let us describe the 1-jet prolongation of a graded curve γ on (M,�M). If γ ∗ is
given by (2.2), then j 1γ is determined by the following equations:



j 1(γ )∗
(
xi

t

) = ∂
∂t

(f i(t)) = (f i)′(t)

j 1(γ )∗
(
xi

s

) = ∂
∂s

(γ ∗(yi)) = 0

j 1(γ )∗
(
x−i

t

) = ∂
∂t

(gi(t)s) = (gi)′(t)s

j 1(γ )∗
(
x−i

s

) = ∂
∂s

(gi(t)s) = gi(t).

(2.5)

Moreover, for the curves (2.4), given by the variations produced by the graded vector field d,
we have 



j 1(γ t̄,s̄ )
∗(xi

t

) = ∂
∂t

(f i(t) + gi(t)s̄s) = (f i)′(t) + (gi(t))′

j 1(γ t̄,s̄ )
∗(xi

s

) = ∂
∂s

(γ ∗̄
t ,s̄

(yi)) = ∂
∂s

(f i(t) + gi(t)s̄s) = −gi(t)s̄

j 1(γ t̄,s̄ )
∗(x−i

t

) = ∂
∂t

(gi(t)s) = (gi)′(t)s

j 1(γ t̄,s̄ )
∗(x−i

s

) = ∂
∂s

(gi(t)s) = gi(t).

(2.6)

3. Graded Poincaré–Cartan forms

Let us begin by considering the Poincaré–Cartan 1-form associated with L, which can be
written locally in a way analogous to that of the classical case, where we would put something
like (dx − ẋ dt) ∂L

∂ẋ
+ L dt:


L
0 := (

dGxa − dGt · xa
t − dGs · xa

s

) ∂L

∂xa
t

+ dGt · L. (3.1)

It is from this 1-form that we want to define our definitive form. But before doing this, in
order to get a better understanding of the structure of 
L

0 , let us rewrite it in terms of L and a
canonical graded endomorphism of J 1(R1|1, (M,A)), J :

J := J̃ − dGt ⊗ �1 − dGs ⊗ �2

where

J̃ = dGxa ⊗ ∂

∂xa
t

�1 = xa
t

∂L

∂xa
t

�2 = xa
s

∂L

∂xa
t

.

We have then

LG
J L = [iJ , dG](L) = iJ dGL

=
(

dGxa ⊗ i ∂

∂xa
t

− dGt · xa
t ⊗ i ∂

∂xa
t

− dGs · xa
s ⊗ i ∂

∂xa
t

)
dGL

= (
dGxa − dGt · xa

t − dGs · xa
s

) ∂L

∂xa
t

= 
L
0 − dGt · L

that is,


L
0 = LG

J L + dGt · L.
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Note that this expression transfers the question about whether 
L
0 is canonical to the same

question but this time about J . (An intrinsic construction of J , which is rather technical, will
be considered elsewhere [MMV 02]. For the moment, let us mention that J is the graded
analogue of the (1,m)-tensor field Sη that appears in [Sau 89], pp 156–8, for the particular
case m = 1.)

Consider the vector field on J 1(R1|1, (M,A)) d
ds

, which is the horizontal (or total) lifting
of ∂

∂s
as a vector field on (M,A). (See [Mon 92] for definitions. Here, it suffices to know its

local expression d
ds

= ∂
∂s

+ xa
s

∂
∂xa + xa

ts
∂

∂xa
t
. See also remark 2 below.) Next, we take LG

d
ds

and

go over the graded bundle J 2(R1|1, (M,A)). Define


L := LG
d
ds


L
0

so that


L = (
dGxa

s − dGt · xa
ts

) ∂L

∂xa
t

+ (−1)|x
a |(dGxa − dGt · xa

t − dGs · xa
s

) d

ds

∂L

∂xa
t

+ dGt · dL

ds
.

Now, applying dG to this expression, we will arrive at the Poincaré–Cartan 2-form on
J 2(R1|1, (M,A)) (with the appropriate condition of regularity in L, namely det

(
∂2L

∂xa
t ∂xb

t

)∼ �= 0),

�L = dG
L.

It is easy to see that the local expression of �L is

�L = dGt dGxa
ts · ∂L

∂xa
t

− (
dGxa

s − dGt · xa
ts

)
dG

(
∂L

∂xa
t

)

+ (−1)|x
a|(dGt dGxa

t − dGs dGxa
s

) d

ds

∂L

∂xa
t

− (−1)|x
a|(dGxa − dGt · xa

t − dGs · xa
s

)
dG

(
d

ds

∂L

∂xa
t

)
− dGt dG

(
dL

ds

)
.

(3.2)

It is easy to check that this form is preserved by coordinate changes, so it is a well-defined
global graded 2-form.

Remark 1. The coordinates on J 2(R1|1, (M,A)) are
{
t, s, xa, xa

t , xa
s , xa

ts, x
a
tt

}
, but we can see

from (3.2) that �L really depends only on
{
t, s, xa, xa

t , xa
s , xa

ts

}
. Thus, it is very interesting

to be able to construct a space with these coordinates to project this 2-form. Such a space
is an intermediate graded bundle between J 1(R1|1, (M,A)) and J 2(R1|1, (M,A)), and has
been constructed in [Mon-Muñ 02]. We shall not repeat its construction here, but refer the
reader to that paper for details (see also the last section). We will denote this space by
J 1|1(R1|1, (M,A)).

Remark 2. Let us make some comments about the use of LG
d
ds

which may seem unnatural

at first sight. In a graded manifold (M,A) with coordinates {xi, x−j }1�j�n

1�i�m, we have two
different notions of integral: the Berezin and the graded one. If we are given a superfunction
f = f0 + fjx

−j + · · · + fI x
−I (where I = {1, . . . , n}), their respective actions are∫

Ber
f = fI and

∫
Grad

f = f0.

Accordingly, when dealing with the graded calculus of variations one introduces two different
notions of Lagrangian densities: the Berezinian densities and the graded densities. For a
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graded submersion p : (M,A)×R
1|1 → R

1|1, the first order Berezinian Lagrangian densities
have the form [

dGt ⊗ d

ds

]
· L (3.3)

where L ∈ A1
JG

(R1|1, (M,A)), and the k-order graded Lagrangian densities are

dGt · K

with K ∈ Ak
JG

(R1|1, (M,A)). The crucial point is that to any first order Berezinian Lagrangian
density as (3.3), we can associate a second order graded Lagrangian density

dGt · dL

ds
(3.4)

in such a way that the solutions of the variational equations they induce are the same
(Comparison Theorem, see [Mon-Mun 92]. Now, we observe that (3.4) can be written as
LG

d
ds

(dGt · L), so the operator LG
d
ds

passes from Berezinian densities to graded densities, though

increasing the order. The advantage is that we can apply the well known graded techniques to
problems with a Berezinian origin.

4. The graded Liouville vector field

In the classical setting for autonomous Lagrangians L, one constructs a symplectic form
associated with L on TM, ωL, and a function called the energy EL, in such a way that the
integral curves of the vector field ξL, given by iξL

ωL = dEL, are the solutions to Euler–
Lagrange equations. This is achieved with the introduction of a certain canonical vector field,
the Liouville vector field �; the definition of the energy is then

EL = L − �L.

These notions are used as the base of the following development.
A graded vector field on the space of solutions will be called projectable if it has the form

X = ∂

∂t
+

∂

∂s
+ X̃

where X̃ is its vertical part. If X is such a field, then

ιX�L = ι ∂
∂t
�L + ι ∂

∂s
�L + ιX̃�L

and

ιX�L = 0 if and only if ιX̃�L = −(
ι ∂

∂t
�L + ι ∂

∂s
�L

)
.

To compute ι ∂
∂t
�L + ι ∂

∂s
�L we only need to know the factors of dGt, dGs in the local

expression for �L (3.2); these are, for dGt

dGxa
ts · ∂L

∂xa
t

+ xa
ts dG

(
∂L

∂xa
t

)
+ (−1)|x

a | dGxa
t

d

ds

∂L

∂xa
t

+ (−1)|x
a |xa

t dG

(
d

ds

∂L

∂xa
t

)
− dG

(
dL

ds

)

and for dGs

(−1)|x
a | dGxa

s

(
d

ds

∂L

∂xa
t

)
+ (−1)|x

a |xa
s dG

(
d

ds

∂L

∂xa
t

)
.
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Let us rewrite these factors in a more appropriate way. The factor of dGt is

dG

(
xa

ts

∂L

∂xa
t

)
+ (−1)|x

a | dG

(
xa

t

d

ds

∂L

∂xa
t

)
− dG

(
dL

ds

)

= dG

(
xa

ts

∂L

∂xa
t

+ (−1)|x
a |xa

t

d

ds

∂L

∂xa
t

− dL

ds

)

= dGLG
d
ds

(
xa

t

∂L

∂xa
t

− L

)
= LG

d
ds

dG(�1L − L).

On the other hand, the factor of dGs can be written as

dG

(
(−1)|x

a |xa
s

d

ds

∂L

∂xa
t

)
= dGLG

d
ds

(
−xa

s

∂L

∂xa
t

)
= −LG

d
ds

dG(�2L).

So, our condition for ιX�L = 0 now reads

ιX̃�L = −LG
d
ds

dG(�1L − L) + LG
d
ds

dG(�2L) = dGLG
d
ds

(L − �L).

Definition 1. We will call the graded Liouville vector field the field on J 1(R1|1, (M,A)):

� := �1 − �2 = (
xa

t − xa
s

) ∂

∂xa
t

. (4.1)

Remark 3. The graded Liouville vector field can be constructed intrinsically (see
[Car-Fig 97] for details). Note also that, being defined on J 1(R1|1, (M,A)),� can be lifted
to J 1|1(R1|1, (M,A)).

Definition 2. The energy associated with the Lagrangian L is

EL := LG
d
ds

(L − �L) = LG
d
ds

(
L − (

xa
t − xa

s

) ∂L

∂xa
t

)
. (4.2)

Then, we have

ιX�L = 0 if and only if ιX̃�L = dGEL. (4.3)

5. Graded semisprays and Euler–Lagrange equations for non-autonomous
super-Lagrangians

Under the assumptions of regularity for L, a graded vector field X̃L solution of (4.3) determines
a unique XL = ∂

∂t
+ ∂

∂s
+ X̃L (graded vector field on the space J 1|1(R1|1, (M,A))) which is a

solution of 


ιXL�L = 0
ιXL dGt = 1
ιXL dGs = 1.

(5.1)

Definition 3. This graded vector field XL is called the (graded) Euler–Lagrange vector field.

Remark 4. This setting resembles that of the classical cosymplectic manifolds (see [Lib 59,
Alb 89, CLL 92]). A cosymplectic manifold is a triple (M, θ, ω) consisting of a smooth
(2n + 1)-dimensional manifold M with a closed 1-form θ and a closed 2-form ω, such that
θ ∧ ωn �= 0. The standard example of a cosymplectic manifold is provided by an ‘extended
cotangent bundle’ (R × T ∗N, dt, π∗ dλ), with t : R × T ∗N → R and π : R × T ∗N → T ∗N
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the canonical projections and λ the canonical Liouville 1-form on T ∗N . On a cosymplectic
manifold M there exists a distinguished vector field R, the Reeb vector field, defined by

iRθ = 1 iRω = 0.

From (5.1) we see that we are considering the graded analogue of the cosymplectic structure
of classical mechanics, so XL could also be called the graded Reeb vector field. However,
we will follow more closely the equivalent approach of Saunders and Crampin (see [Sau 89]),
based on the notion of semisprays. The reason is that this formalism extends inmediately to
the case of fields in a covariant way, which is difficult in the cosymplectic framework.

Now, the idea is to develop conditions (5.1) to obtain the Euler–Lagrange superequations,
but we will need to introduce some technical concepts first. For brevity, we will write
J 1|1(R1|1, (M,A)) as J

1|1
G (π).

Consider the 1-forms on J
1|1
G (π) (called the contact 1-forms)

�a := dGxa − dGt · xa
t − dGs · xa

s �a := dGxa
s − dGt · xa

ts .

Let c : R
1|1 → (M,A) a graded curve; its 1|1-jet prolongation is a section, denoted by

j 1c, of J
1|1
G (π). A local section of J

1|1
G (π), seen as a graded curve c̄ on J

1|1
G (π), is the 1|1-jet

prolongation of a graded curve on (M,A) if and only if

c̄∗�a = 0 c̄∗�a = 0

this amounts to saying that, if
{
t, s, xa, xa

t , xa
s , xa

ts

}
are the local coordinates of J

1|1
G (π) then,

along this section (to be closer to common practice in physics, in the following we omit the
evaluation on the section):(

d

dt
+

d

ds

)
xa = xa

t + xa
s

(
d

dt
+

d

ds

)
xa

s = xa
ts.

Definition 4. A graded semispray is a projectable vector field X ∈ XG

(
J

1|1
G (π)

)
such that its

integral curves are 1|1-jet prolongations, i.e,

ιX dGt = 1 = dGs ιX�a = 0 = ιX�a.

Thus, a graded semispray is given locally by

X = ∂

∂t
+

∂

∂s
+

(
xa

t + xa
s

) ∂

∂xa
+ Aa ∂

∂xa
t

+ xa
ts

∂

∂xa
s

+ Ba ∂

∂xa
ts

.

In the classical case, a semispray can be characterized through the vertical endomorphism
J̃ = ∂

∂xi
t

⊗ dxi and the Liouville vector field � = xa
t

∂
∂xa

t
; thus, X ∈ X (J 1(R,M)) is a

semispray if and only if JX = 0 and J̃X = �, where J = J̃ − � ⊗ dt . The graded situation
is somewhat different.

Proposition 1. If X ∈ XG

(
J

1|1
G (π)

)
is a graded semispray, then

JX = 0 and J̃X = �.

Proof. It suffices to take into account the local expressions for X, J, J̃ and �. �

However, the converse is not true in general. Let us show a counterexample: an arbitrary
X ∈ XG

(
J

1|1
G (π)

)
has the local expression

X = f
∂

∂t
+ g

∂

∂s
+ Aa ∂

∂xa
+ Ba ∂

∂xa
t

+ Ca ∂

∂xa
s

+ Da ∂

∂xa
ts
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with f, g depending on the supercoordinates
{
t, s, xa, xa

t , xa
s , xa

ts

}
. If JX = 0 and J̃X = �,

all we can say is that Aa = xa
t + xa

s , and f xa
t + gxa

s − xa
t − xa

s = 0; but if we take
f = xa

s + 1, g = 1 − xa
t , we have

xa
s xa

t + xa
t + xa

s − xa
t xa

s − xa
t − xa

s = 0

so JX = 0 and J̃X = �, but X is not a semispray. Note that even when X is a projectable
graded vector field, the reciprocal is not true, as Ca �= xa

ts in general.
In order to make explicit computations, we will need the following result.

Proposition 2. The local expression of the Poincaré–Cartan 2-form �L, is

�L = dGs dGs · xa
s

d

ds

∂2L

∂s∂xa
t

+ dGt dGs

(
−(−1)|x

a | d

ds

(
xa

t

∂2L

∂s∂xa
t

)
+

d

ds

(
xa

s

∂2L

∂t∂xa
t

)
+

d

ds

∂L

∂s

)

+ (−1)|x
b| dGt dGxb · d

ds

(
− ∂L

∂xb
+ (−1)|x

a ||xb|xa
t

∂2L

∂xb∂xa
t

+
d

ds

∂2L

∂t∂xb
t

)

+ (−1)|x
a
s ||xb | dGt dGxb

t · d

ds

(
xa

t

∂2L

∂xb
t ∂xa

t

)
+ dGt dGxb

s

(
− ∂L

∂xb
+

∂2L

∂t∂xb
t

+ (−1)|x
a||xb |xa

t

∂2L

∂xb∂xa
t

− (−1)|x
b| d

ds

(
− ∂L

∂xb
s

+ (−1)|x
a ||xb|xa

t

∂2L

∂xb
s ∂xa

t

))

+ (−1)|x
a||xb | dGt dGxb

ts · xa
t

∂2L

∂xb
t ∂xa

t

− dGs dGxb

(
d

ds

∂2L

∂s∂xb
t

+ (−1)|x
a ||xb | d

ds

(
xa

s

∂2L

∂xb∂xa
t

))

− (−1)|x
a||xb | dGs dGxb

t · d

ds

(
xa

s

∂2L

∂xb
t ∂xa

t

)

− dGs dGxb
s

(
(−1)|x

a ||xb
s | d

ds

(
xa

s

∂2L

∂xb
s ∂xa

t

)
+ (−1)|x

b
s | d

ds

∂L

∂xb
t

+ (−1)|x
a
s ||xb |xa

s

∂2L

∂xb∂xa
t

− (−1)|x
b| ∂2L

∂s∂xb
t

)

− (−1)|x
a
s ||xb | dGs dGxb

ts · xa
s

∂2L

∂xb
t ∂xa

t

− (−1)|x
a |+|xb | dGxa dGxb · d

ds

∂2L

∂xb∂xa
t

− (−1)|x
a|+|xb | dGxa dGxb

t · d

ds

∂2L

∂xb
t ∂xa

t

− dGxa dGxb
s

(
(−1)|x

a |+|xb
s | d

ds

∂2L

∂xb
s ∂xa

t

+ (−1)|x
a | ∂2L

∂xb∂xa
t

)

− dGxa
s dGxb · ∂2L

∂xb∂xa
t

− (−1)|x
a | dGxa dGxb

ts · ∂2L

∂xb
t ∂xa

t

− dGxa
s dGxb

t · ∂2L

∂xb
t ∂xa

t

− dGxa
s dGxb

s · ∂2L

∂xb
s ∂xa

t

.

Proof. A very long but standard computation. �

Now, consider the Euler–Lagrange graded vector field XL = ∂
∂t

+ ∂
∂s

+ X̃L which is a
solution of (5.1).
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Proposition 3. The Euler–Lagrange field is a graded semispray.

Proof. Consider the factors containing dGxb
ts and dGxb

t in �L. From proposition 2, these are
for dGxb

ts

(−1)|x
a ||xb| dGt dGxb

ts · xa
t

∂2L

∂xb
t ∂xa

t

− (−1)|x
a
s ||xb| dGs dGxb

ts · xa
s

∂2L

∂xb
t ∂xa

t

− (−1)|x
a| dGxa dGxb

ts · ∂2L

∂xb
t ∂xa

t

thus, contracting with XL = ∂
∂t

+ ∂
∂s

+ Aa ∂
∂xa + Ba ∂

∂xa
t

+ Ca ∂
∂xa

s
+ Da ∂

∂xa
ts

and equating to zero,
we obtain

Aa = xa
t + xa

s .

To prove that Ca = xa
ts , we isolate the factors containing dGxb

t ; the statement follows then
from the local characterization of semisprays. �

Definition 5. If X ∈ XG

(
J

1|1
G (π)

)
is a graded semispray, a graded curve c : R

1|1 → (M,A)

is called a trajectory of X if its 1|1-jet prolongation is an integral curve of X.

Let us recall that, in the jet bundle J ∞
G (π)

d

dt
xa

ts = xa
tts

d

ds
xa

t = xa
tt

then locally c is a trajectory of X if and only if the following system of second-order differential
equations is satisfied along the section induced by c:{

Aa = (
d
dt

+ d
ds

)
xa

t = xa
tt + xa

ts

Ba = (
d
dt

+ d
ds

) (
d
dt

+ d
ds

)
xa

s = xa
tts

(it is really a mixture of first- and second-order equations).

Theorem 1. Let L be a regular Lagrangian on J
1|1
G (π), and let XL be the Euler–Lagrange

semispray. Then the trajectories of XL are the solutions of the Euler–Lagrange superequations

∂L

∂xa
− d

dt

∂L

∂xa
t

− (−1)|x
a | d

ds

∂L

∂xb
s

= 0.

Proof. The technique is the same as in proposition 3: consider the factors containing dGxb
s in

the equation ιXL�L = 0
(
with XL = ∂

∂t
+ ∂

∂s
+

(
xa

t + xa
s

)
∂

∂xa + Ba ∂
∂xa

t
+ xa

ts
∂

∂xa
s

+ Da ∂
∂xa

ts

)
. �

6. The graded Noether theorem and supersymmetries

Our purpose in this section is to give a version of Noether’s theorem on the existence of
conserved quantities along the trajectories of the system valid in the graded case. There are a
lot of classical formulations of this result, but not all of them can be used as a guide for the
graded case. What we will present here is a graded version of the theorem directly related
to the symplectic structure of the Lagrangian formalism, as it provides an interpretation of
the energy as a conserved quantity related to invariance under ‘supertime’ translations and a
connection with the t- and s-Hamiltonians of [Mon-Muñ 02].

The main ingredient is a set of transformations of the base manifold

� : R
1|1 × (M,A) → (M,A)
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forming a (1, 1)-supergroup (see [Mon-Sán 93] for details). This implies the existence of a
graded derivation of A, a supervector field T which can be lifted to a supervector field T̄ on
J

1|1
G (π). Now, we state a property of these liftings.

Lemma 1. The condition

j 2(c)∗(ιX�L) = 0

for all X projectable supervector fields on the space J
1|1
G (π), is equivalent to the section c

being a solution to the Euler–Lagrange superequations

∂L

∂xa
− d

dt

∂L

∂xa
t

− (−1)|x
a | d

ds

∂L

∂xa
s

= 0.

Proof. See theorem 8.1 in [Mon-Muñ 02]. �

This result reveals that, along sections that represent trajectories of the system, ιT̄ �L = 0.
That is what we need to obtain conserved currents.

Definition 6. A supervector field X ∈ XG

(
J

1|1
G (π)

)
is a supersymmetry of the Lagrangian

problem associated with L if

LG
X
L = 0. (6.1)

Theorem 2. If T̄ ∈ XG

(
J

1|1
G (π)

)
is a supersymmetry of the Lagrangian problem associated

with L, then ιT̄ 
L is constant along the trajectories of the system. This quantity is called the
Noether supercurrent associated with T̄ .

Proof. Let us develop the condition of (6.1). We have

LG
T̄

L = ιT̄ dG
L + dGιT̄ 
L = 0

and applying the preceding lemma, along the trajectories

dGιT̄ 
L = 0. �

Now, let us recall that, in the classical setting, the energy is conserved whenever the
system presents invariance under time translations. As an application of Noether’s theorem,
we will now deduce the expression of the superenergy under the assumption of non-explicit
dependence on s, t in the super-Lagrangian; following our guiding principle (mentioned in the
introduction), we consider the ‘supertime’ translations, induced by the supervector field

T = ∂

∂s
+

∂

∂t
.

It is a straightforward computation to see that, when L does not depend explicitly on
s, t,LG

T 
L = 0. Then, we have the conserved current (see (4.2))

ι ∂
∂s

+ ∂
∂t

L = −xa

ts

∂L

∂xa
t

− (−1)|x
a |xa

t

d

ds

∂L

∂xa
t

+
dL

ds
− (−1)|x

a |xa
s

d

ds

∂L

∂xa
t

= d

ds

(
−(

xa
t − xa

s

) ∂L

∂xa
t

+ L

)
= EL.

Let us make the important remark that

EL = Ht + Hs
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where Ht and Hs are, respectively, the t-Hamiltonian and s-Hamiltonian introduced in
[Mon-Muñ 02]:

Ht = − d

ds

(
xa

t

∂L

∂xa
t

− L

)
Ht = d

ds

(
xa

s

∂L

∂xa
t

)
.

We see here that these superfunctions, which appear as separate entities in the paper
cited, have a natural interpretation taken together. Thus, we can recover the Hamiltonian
formulation of supermechanics from within the Lagrangian one in the autonomous case, by
defining the Hamiltonian as the Noether supercurrent associated with ‘ supertime’ translations
(the superenergy), just as in the classical setting.

7. Super-Lagrangian formalism and Batalin–Vilkoviski master equation

Let us recall the basics of the Batalin–Vilkoviski formalism (see [Bat-Vil 81, Kos 95, Wit 90]).
The theory deals with a set of fields �A (A is a certain set of indices) and the corresponding
antifields �∗

A, with parity reversed, that is, |�∗
A| = |�A| + 1. Then, it searches for an action

W(�,�∗) satisfying some technical conditions that make it suitable to construct a quantum
field theory; one of these is the invariance of a functional integral, which could be written as

Z =
∫

e
i
h̄
W

∏
A

d�A

under the so-called BRST transformations. This condition is equivalent to the famous master
equation

1
2 (W,W) = ih̄�W (7.1)

where the odd bracket (., .) is defined by

(F,H) = ∂jF

∂�A

∂kH

∂�∗
A

− ∂jF

∂�∗
A

∂kH

∂�A
(7.2)

and � is the Batalin–Vilkoviski operator

� = ∂j

∂�A

∂k

∂�∗
A

. (7.3)

Note the important property of nilpotency:

�2 = 0.

Witten showed ([Wit 90], and see also [Sch 93]) that these formulae have an algebraic
background: they make sense each time one has a Gerstenhaber algebra with a generating
operator of square zero. Let us be more explicit.

Definition 7. Let G be an associative, graded commutative algebra over a commutative field
of characteristic 0. Let [[., .]] be an odd Poisson bracket on G with degree −1. The pair
(G; [[., .]]) is called a Gerstenhaber algebra structure on G.

Remark 5. For generalities about graded Poisson brackets, see [Bel-Mon 95] or [Kos 95].

Definition 8. A linear operator of degree −1,� : G → G, generates the graded bracket
[[., .]] on G if

[[S, T ]] = (−1)|S|(�(ST ) − �(S)T − (−1)|S|S�(T ))

for all S, T ∈ G. The Gerstenhaber algebra (G; [[., .]]) is called a Batalin–Vilkoviski algebra
(or an exact Gerstenhaber algebra) if �2 = 0.
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Remark 6. It is important to make the following observations about how to construct
generating operators (see [Khu-Ner 93, Kos-Mon 01]). On a supermanifold (M,A) with
a Berezinian volume ξ , there is a divergence operator divξ , that maps derivations of A to A.
Given an odd Poisson bracket on A, the divergence of a Hamiltonian derivation up to a sign
and a factor of 1

2 , is a generating operator of the odd Poisson bracket. More precisely, the
operator f �→ (−1)|f | 1

2 divξ [[f, .]] (f ∈ A) generates the odd Poisson bracket [[., .]].

Of course, the bracket (7.2) and the Batalin–Vilkoviski operator (7.3), give an example of
Batalin–Vilkoviski algebra.

If (G; [[., .]]) is a Batalin–Vilkoviski algebra, we say that S ∈ G is a solution of the
associated master equation if it verifies the analogue of (7.1):

1
2 [[S, S]] = �S. (7.4)

Our aim in the rest of this section is to prove the following result.

Theorem 3. The space of solutions of the variational problem determined by a classical
Lagrangian L ∈ C∞(J 1(π : M × R → R)), has the structure of a Batalin–Vilkoviski
algebra, and the superenergy S = EL is a solution of the associated master equation.

To achieve that, we will work with a specific supermanifold: that with its structural sheaf
determined by its ring of differentiable functions, (M,C∞(M)); moreover, we will restrict
ourselves to the autonomous case, that is, when there is no explicit dependence on s, t in
the Lagrangian, so we will drop the factor R

1|1. The steps to follow are: first, to construct
out of the space J

1|1
G (π) another one that can be identified with a symplectic supermanifold

having a very simple structure (one of Koszul–Schouten type); this is precisely the space
of solutions that appears in the statement of the theorem. Second, to construct a Batalin–
Vilkoviski system, that is, a system whose evolution is determined by an odd graded Poisson
bracket and a Hamiltonian function that verifies the master equation. The first step has already
been considered in [Mon-Muñ 02], and here we will just review it briefly.

Proof. Consider (M,C∞(M)). In this supermanifold, there are no negative index
supercoordinates so we will denote them by {xi}n=dim M

i=1 . A classical regular Lagrangian
L ∈ C∞(J 1(π : R × M → M)) can be lifted to J 1(R1|1, (M,A)) and then we can apply all
the results of the previous sections. In particular, it can be seen that the space J

1|1
G (π) projects

onto another space, denoted by (S,AS) and which will be called the space of solutions, in
which �L is a symplectic form such that this space is graded isomorphic to (TM,�(TM ))

endowed with the Koszul–Schouten form �KS (theorem 14.5 in [Mon-Muñ 02]). If
in TM we take the classical canonical coordinates given by L,

{
xi, pi = ∂L

∂xi

}n

i=1, then
{xi, pi , x−i , p−i}ni=1 is a supercoordinate system on (TM,�(TM)) and the Koszul–Schouten
form has the aspect

�KS = dGx−i dGpi + dGxi dGp−i .

Moreover, the super-Hamiltonian vector field corresponding to the superfunction
EL(=Ht + Hs) is

XEL
= −LXH

− d (7.5)

where H is the classical Hamiltonian associated with L, i.e, H = xi
t p

i − L.
Let us note that the supersymplectic form �L has parity |L| + 1, so if we want to obtain

an associated odd Poisson bracket, we must take L as a homogeneous even Lagrangian.
It is well known (see [Bel-Mon 95]) that the Koszul–Schouten form �KS, has an associated

graded Poisson bracket [[., .]] which is a Koszul–Schouten bracket generated by an operator of



Symplectic structure of Euler–Lagrange superequations 5007

the typeLP , where P is a Poisson bivector. In this case, P = PL is the Poisson bivector induced
on TM by the Lagrangian L, and it is non-degenerate if L is regular (as we are supposing).

To summarize, what we have obtained from the homogeneous even super-Lagrangian L
on J

1|1
G (π), is an identification of the symplectic superspace (S,AS) endowed with �L, with

the symplectic supermanifold (TM,�(TM)) equipped with the Koszul–Schouten form �L or,
equivalently, with the odd Poisson bracket [[., .]] generated by LPL

, where PL is the Poisson
bivector on TM induced by L. Note that, as a consequence of PL being Poisson,

L2
PL

= 1
2

[
LPL

,LPL

] = 1
2L[PL,PL]SN

= 0

so that the generating operator of the bracket is nilpotent.
Thus ((TM,�(TM )); [[., .]]) endowed with � = LPL

is a Batalin–Vilkoviski algebra.
Now we turn our attention to the master equation.

As we are dealing with a super-Lagrangian L which is not explicitly dependent on t, s,
we have a Hamiltonian to be identified with the superenergy (see section 5), let us call it S.
In the coordinates we are working with (see [Mon-Muñ 02]), this is

S = EL = Ht + Hs = dH − ω

where ω = dxi dpi is the symplectic form on TM induced by L as a classical Lagrangian.
The ‘supertime evolution’ of an observable (superfunction) α ∈ �(TM), is defined

through (
∂

∂t
+

∂

∂s

)
α = [[S, α]].

Of course, the Hamiltonian is a constant of motion. We know it from the graded Noether
theorem of section 6, but now we can see it explicitly: as the degree of [[., .]] is −1 and those
of the s- and t- Hamiltonians are 0 and 1, respectively, we have

[[S, S]] = [[Ht + Hs,Ht + Hs]] = [[Hs,Hs]]

but to Hs corresponds to the Hamiltonian supervector field XHs
= d (the exterior differential

on TM), see [Bel-Mon 95], so we get the classical Batalin–Vilkoviski master equation:

[[S, S]] = [d, d] = 0 (7.6)

(here, [., .] is the graded bracket on endomorphisms of �(TM)).
Now, applying the graded Jacobi identity for the odd Poisson bracket [[., .]], we get for

any α ∈ �(TM)

[[S, [[S, α]]]] = 0.

This result states that the so-called classical BRST operator, [[S, .] = XS = −LXH
− d (recall

(7.5)) is also nilpotent.
By virtue of (7.6), S will be a solution of the master equation (7.4) if �S = 0. But this

is very easy to see (recall remark 3): � = LPL
as a generating operator is the divergence of

the Hamiltonian derivation with respect to the canonical Berezinian ξ on the supermanifold
(TM,�(TM)) (see [Kos-Mon 01] for the construction of ξ ), so

�S = (−1)|S| 1
2 divξ [[S, .] = 1

2 divξXHs
− 1

2 divξXHt
= − 1

2 divξ d + 1
2 divξLXH

but in [Kos-Mon 01] it is shown that divξ d = 0 = divξLXH
, so we have

�S = 0

and, consequently, S is a solution of the master equation. �
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Remark 7. Let us note that the generating operator � = LPL
, when written in coordinates,

takes the form of the original Batalin–Vilkoviski operator (7.3).

Corollary 1. The superfunction exp(S) is also a solution of the Batalin–Vilkoviski master
equation.

Proof. Recall that, from the definition of the generating operator,

LPL
(αβ) = (−1)|α|([[α, β]] − LPL

(α)β − (−1)|α|αLPL
(β)

) ∀α, β ∈ �(M).

Then,

LPL
(eS) = LPL

(e−ω edH) = [[e−ω, edH ]] − LPL
(e−ω) edH − e−ωLPL

(edH )

but we have edH = 1 + dH , so LPL
edH = 0. On the other hand, LPL

ω = 0, and this implies
LPL

e−ω = 0 as well. Thus, only the term [[e−ω, dH ]] remains to be calculated; but from
the definition of the Koszul–Schouten bracket, [[e−ω, dH ]] = −LXH

e−ω = 0. What we have
obtained is

LPL
(eS) = 0.

Moreover, [[eS, eS]] gives us three terms, and all of them vanish: applying Leibniz’s rule,
[[e−ω, e−ω]] reduces to terms of the form [[ω, e−ω]] = d e−ω = 0; on the other hand, the other
two terms contain edH = 1 + dH , so

[[e−ω, edH ]] = [[e−ω, dH ]] = 0 [[edH , edH ]] = [[dH, dH ]] = 0

that is, [[eS, eS]] = 0 and

� eS = 0 = [[eS, eS]]. �

Remark 8. Note that in the theorem and the corollary, we have obtained solutions to (7.4) in
a very strong sense, as both members of the equation vanish separately.

We must insist that we have obtained these results within the super-Lagrangian formalism,
but working with the ‘supertime’ manifold R

1|1 instead of the usual R (see [Ibo-Mar 93] or
[Car-Fig 97] for treatments based on R, and note the differences in the Poincaré–Cartan form
�L with respect to ours). There have also been formulations with an ‘odd time’ τ , which
would correspond to R

0|1: one such can be consulted in [Day 88]; in that work, some questions
about the relation between L and S are raised. We hope we have answered them, offering a
framework exhibiting all the features of the classical one. In particular, the solution obtained
to the Batalin–Vilkoviski master equation, S, can be viewed as the superenergy associated with
L through the super-Lagrangian formalism.
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[Mon-Mun 92] Monterde J and Muñoz-Masqué J 1992 Variational problems on graded manifolds Contemp. Math.

132
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