
Hamiltonian dynamical systems: symbolical, numeri-
cal and graphical study

Setsuo Takato and José A Vallejo

Abstract. Hamiltonian dynamical systems can be studied from a variety of viewpoints. Our in-
tention in this paper is to show some examples of usage of two Maxima packages for symbolical
and numerical analysis (pdynamics and poincare, respectively), along with the set of scripts
KETCindy for obtaining the LATEX code corresponding to graphical representations of Poincaré
sections, including animation movies.

Mathematics Subject Classification (2010). Primary 97N80 ; Secondary 65P10.
Keywords. Hamiltonian systems, Poincaré sections, Mathematical Software.

1. Introduction
For simplicity, we will consider Hamiltonians defined on the symplectic manifold R2n, with coor-
dinates (qj , pj) (1 ≤ j ≤ n), endowed with the canonical form w = dpj ∧ dqj , and the induced
Poisson bracket on C∞(R2n)

{f, g} =

n∑
i=1

(
∂f

∂pi

∂f

∂qi
− ∂f

∂qi
∂f

∂pi

)
,

although all the results remain valid for an arbitrary symplectic manifold. For background on Hamil-
tonian systems, see [8].

Given a Hamiltonian system defined by the Hamiltonian function H ∈ C∞(R2n) and the
Poisson bracket {·, ·},

q̇j =
∂H

∂pj

ṗj = −∂H
∂qj

, (1.1)

two of the main goals in the theory of dynamical systems are the determination of possible closed,
stable orbits, and the computation of adiabatic invariants (of course, taking for granted the impossi-
bility of solving (1.1) explicitly). Of particular interest is the case in which the Hamiltonian H is a
perturbation of an integrable one, say, H = H0 +

∑n
j=1 ε

jHj . A widely used procedure to study it,
consists in writing the Hamiltonian in the so-called normal form, that is, as a formal series

H =

∞∑
j=0

εjNj

Work partially supported by grants KAKENHI 15K01037 (ST, Japan) and CONACyT CB-2012 179115 (JAV, México).

2 Takato and Vallejo

where N0 = H0, and each Nj commutes with the unperturbed Hamiltonian,

{H0, Nj} = 0 .

Let us recall that given an integral curve, that is, a c(t) = (q(t), p(t)) satisfying (1.1), the
evolution of any observable f ∈ C∞(R2n) along c is determined by

ḟ(t) = {H, f} .

Any smooth function such that {H, f} = 0 is thus a constant of motion, also called a first integral.
Indeed, given enough first integrals one can solve the motion of the system, as the physical trajecto-
ries are determined by the intersection of their level hypersurfaces. Unfortunately, determining first
integrals is a very difficult problem, and there are quite a few systems for which enough first integrals
exist (roughly, these are the so-called integrable systems).

Notice that transforming to the normal form introduces a (possibly infinite) family of first inte-
gralsNj which might not been present in the original system. These additional, spurious symmetries
must be removed in order to have a system equivalent to the original one, and this is usually done by
restricting the system to a reduced phase space through symplectic (singular) reduction. The basic
idea is to restrict the system to a particular level hypersurface and to consider its evolution there. A
number of well-known techniques are available to do this, for instance the ones based on Moser’s
theorem [10]: If Mh denotes the hypersurface H0 = h, suppose that the orbits of the Hamiltonian
flow FltXH0

are all periodic with period T and let S be the quotient with respect to the induced
U(1)−action on Mh. Then, to every non-degenerate critical point p ∈ S of the restricted averaged
perturbation N1|S = 〈H1〉|S corresponds a periodic trajectory of the full Hamiltonian vector field
XH , that branches off from the orbit represented by p and has period close to 2π. When the critical
points are degenerate, one can resort to the second-order normal form to decide the stability of orbits.
An example of this situation is given by the Hénon-Heiles Hamiltonian [7]. These results illustrate
the importance of being able to compute efficiently the normal form of a Hamiltonian system. In
Section 2 we show how to do this using the Computer Algebra System (CAS) Maxima.

Another aspect related to the study of existence and stability of closed orbits is the construction
of Poincaré sections. They provide a direct and very intuitive way for detecting these orbits, but their
computation in closed form is usually impossible, so numerical methods are needed. The traditional
method used for this task has been the fourth-order Runge-Kutta, but more recently methods based
on symplectic integrators (such as symplectic Euler, Störmer-Verlet, symplectic RK, etc.) are also
intensively used, see [3] for a recent review. The choice of one method or another depends very much
on the properties of the system under consideration, in Section 3 we will use the RK method, but
symplectic methods can be included by substituting the rkfun command in the code of poincare
with symplectic ode, recently included in Maxima (from version 5.39.1 onward). In any case,
one of the main goals is to obtain a clean picture of the phase-space portrait of the system, something
that can be challenging for CASs, whose graphical output is not very sophisticate in many cases. To
deal with this issue we present in Section 4 the set of CindyScript macros called KETCindy , which
parse the output of Maxima through the Dynamical Geometry Software (DGS) Cinderella and return
the LATEX code of the corresponding graphics, that can be included in any document even in the form
of an animation. The data for these graphics are actually codes of TPIC specials for LATEX , or pict2e
commands in the case of pdfLATEX , so there they can be inserted in scientific documentation with
great flexibility (see [14, 15, 16, 17] for installation and examples of use).

The Maxima packages pdynamics (short for ‘Poisson Dynamics’) and poincare can be
downloaded from http://galia.fc.uaslp.mx/˜jvallejo/pdynamics.zip and http:

http://galia.fc.uaslp.mx/~jvallejo/pdynamics.zip
http://galia.fc.uaslp.mx/~jvallejo/poincare.mac

Hamiltonian systems: symbolical, numerical and graphical study 3

//galia.fc.uaslp.mx/˜jvallejo/poincare.mac respectively1. The KETCindy pack-
age is available at http://ketpic.com/?lang=english.

2. Symbolic study of Hamiltonian systems: normal forms
Given a smooth vector field in Rm (although what follows is valid in an arbitrary manifold) its flow
is a mapping FlX : Rm → Rm defined by

FlX(t, p)
.
= FltX(p)

.
= cp(t) ,

where cp is the integral curve of X such that, for t = 0, passes through p ∈ Rm (i.e., cp(0) = p).
When m = 2n, there is a canonical symplectic form

Ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn .

Any Hamiltonian H ∈ C∞(R2n), has an associated vector field XH defined by the condition
iXH

Ω = −dH . In local coordinates (qi, pi) it has the expression

XH =

(
∂H

∂p1
,−∂H

∂q1
, . . . ,

∂H

∂pn
,−∂H

∂qn

)
.

Suppose now that X is the generator of an S1−action, so the flow FltX is periodic in the
variable t. This property can be used to put H in normal form (for details, see [1]). To this end, it is
essential to define two averaging operators acting on observables. The first one is denoted as 〈·〉 and
is given by integrating the pullback

〈g〉 .= 1

2π

∫ 2π

0

(FltX)∗g dt ,

for any observable g ∈ C∞(R2n). The second operator, denoted S, is defined as

S(g)
.
=

1

2π

∫ 2π

0

(t− π)(FltX)∗g dt .

In the particular case of a perturbed Hamiltonian, of the form H = H0 + εH1 + ε2

2 H2 + · · · , if the
non-perturbed part H0 generates an S1−action in such a way that its flow is periodic with frequency
function w, it can be proved (see [1]) that its second-order normal form is

N = H0 + ε 〈H1〉+
ε2

2

(
〈H2〉+

〈{
S
(
H1

w

)
, H1

}〉)
.

There are other representations of the normal form (it must be stressed that it is not unique),
but this one has the particular features that it is global (not depending on action-angle variables), and
particularly well-suited for symbolic computation. Let us illustrate the use of the pdynamics Max-
ima package by considering the example of the Pais-Uhlenbeck oscillator. This system is a toy model
of a field theory defined by a Lagrangian depending on higher-order derivatives. These Lagrangians
are believed to lead to perturbatively renormalizable theories, where the infinities appearing in the
perturbation series for the field equations can be cured through some well-defined regularization
procedure. The corresponding Hamiltonian is constructed through a higher-order analog of the Le-
gendre transformation, called the Ostrogadskii formalism [11]. After some suitable transformations

1There is a documentation file inside pdynamics.zip, and the documentation for poincare.mac can be found
at http://galia.fc.uaslp.mx/˜jvallejo/PoincareDocumentation.pdf. Both files contain detailed in-
structions about the installation.

http://galia.fc.uaslp.mx/~jvallejo/poincare.mac
http://galia.fc.uaslp.mx/~jvallejo/poincare.mac
http://ketpic.com/?lang=english
http://galia.fc.uaslp.mx/~jvallejo/PoincareDocumentation.pdf

4 Takato and Vallejo

(see [12]) the Hamiltonian can be expressed as the difference of two harmonic oscillators with re-
spective frequencies w1, w2. Adding an interaction term in the form of a homogeneous polynomial
results in the Hamiltonian

H =
1

2
(p21 + w2

1q
2
1)− 1

2
(p22 + w2

2q
2
2) +

λ

4
(q1 + q2)4 . (2.1)

This can be considered as a perturbed system of the formH = H0+λH1, let us study it symbolically.
We would use the following sequence of commands in Maxima:
(% i1) load(pdynamics)$

(% i2) declare(w1,integer)$

(% i3) assume(w1>0)$

(% i4) declare(w2,integer)$

(% i5) assume(w2>0)$

(% i6) H0(q1,p1,q2,p2):=(p1ˆ2+w1ˆ2*q1ˆ2)/2-(p2ˆ2+w2ˆ2*q2ˆ2)/2$

(% i7) H1(q1,p1,q2,p2):=(q1+q2)ˆ4/4$

(% i8) H2(q1,p1,q2,p2):=0$

Up to here, we have just defined the parameters of the system (the frequencies w1, w2, and
the subhamiltonians Hi). Let us check that the Hamiltonian flow of the non-perturbed part H0 is
periodic by explicitly computing it (we have slightly edited the output of Maxima by writing it as a
column matrix, to make it more readable):
(% i9) phamflow(H0); 

p1 sin (t w1)
w1

+ q1 cos (t w1)

p1 cos (t w1)− q1 w1 sin (t w1)

q2 cos (t w2)− p2 sin (t w2)
w2

q2 w2 sin (t w2) + p2 cos (t w2)

 (% o9)

It is clear that the flow is periodic with period T = 2πw1w2. Thus, we define the frequency
function as
(% i10) u(q1,p1,q2,p2):=1/(w1*w2)$

Finally, we can compute N1 = 〈H1〉:
(% i11) phamaverage(H1,H0,u(q1,p1,q2,p2));

1

32w4
1 w

4
2

[((
3q42 + 12q21 q

2
2 + 3q41

)
w4

1 +
(
12p21 q

2
2 + 6p21 q

2
1

)
w2

1 + 3p41
)
w4

2 (% o11)

+
((

6p22 q
2
2 + 12p22 q

2
1

)
w4

1 + 12p21 p
2
2 w

2
1

)
w2

2 + 3p42 w
4
1

]
The second-order normal form can be computed along similar lines but, as one can guess, the

expressions become very cumbersome, and not much illuminating (see (% o15) below). Indeed, it is
customary to simplify these expressions by rewriting them in terms of the so-called Hopf variables.
The idea behind these variables is the following: in the case in which the normal subhamiltonians
Ni are polynomials, the fact that they commute with N0 = H0 means that they are invariant under
the smooth S1−action of XH0

. The space of smooth invariant functions is finitely generated (this is
a generalization to the smooth case of a classical result of Hilbert dealing with algebraic invariants,
called the Schwarz theorem [13]), and a set of functional generators is precisely given by the Hopf
polynomials, that can be considered as new variables. In other words, any smooth invariant function
can be expressed as a smooth function of the Hopf variables. For the Pais-Uhlenbeck oscillator with

Hamiltonian systems: symbolical, numerical and graphical study 5

resonance 1 : 2 (that is, when w1 = 1 and w2 = 2), these Hopf invariants can be readily computed
[2] and they turn out to be

ρ1 =q21 + p21

ρ2 =4q22 + p22

ρ3 =p2(p21 − q21)− 4p1q1q2 (2.2)

ρ4 =2q2(p21 − q21) + 2q1p1p2 .

We can compute N2 by extracting the coefficient of λ2 in the second-order normal form of H .
The following commands show how to study this resonance, defining a function phopf6res12
(not contained in the pdynamics package) adapted to this case, whose purpose is to express ev-
erything in terms of the variables (2.2). First, we define the Hamiltonian:
(% i12) K0(q1,p1,q2,p2):=(p1ˆ2+q1ˆ2)/2-(p2ˆ2+4*q2ˆ2)/2$

(% i13) K1(q1,p1,q2,p2):=(q1+q2)ˆ4/4$

(% i14) K2(q1,p1,q2,p2):=0$

and then compute the second-order normal form (here and below, the Maxima output has been
slightly edited in order to fit the page):
(% i15) pnormal2(K0,K1,K2,%lambda);

λ2

4587520

(
255168q62 +

(
1184256q21 + 191376p22 + 1184256p21

)
q42

+
(
225792q41 +

(
592128p22 + 4580352p21

)
q21 + 47844p42 + 592128p21 p

2
2 + 225792p41

)
q22

+
(
2064384p1 p2 q

3
1 − 2064384p31 p2 q1

)
q2 + 48384q61 +

(
314496p22 + 145152p21

)
q41

+
(
74016p42 − 403200p21 p

2
2 + 145152p41

)
q21 + 3987p62 + 74016p21 p

4
2 + 314496p41 p

2
2 + 48384p61

)
+

λ

512

(
48q42 +

(
192q21 + 24p22 + 192p21

)
q22 + 48q41 +

(
48p22 + 96p21

)
q21 + 3p42 + 48p21 p

2
2 + 48p41

)
− 4q22 + p22

2
+
q21 + p21

2
(% o15)

Now, the term N2 can be easily extracted:
(% i16) expand(coeff(%,%lambda,2));

3987q2
6

71680
+

2313q1
2 q2

4

8960
+

11961p2
2 q2

4

286720
+

2313p1
2 q2

4

8960
+

63q1
4 q2

2

1280
+

2313p2
2 q1

2 q2
2

17920

+
639p1

2 q1
2 q2

2

640
+

11961p2
4 q2

2

1146880
+

2313p1
2 p2

2 q2
2

17920
+

63p1
4 q2

2

1280
+

9p1 p2 q1
3 q2

20

− 9p1
3 p2 q1 q2

20
+

27q1
6

2560
+

351p2
2 q1

4

5120
+

81p1
2 q1

4

2560
+

2313p2
4 q1

2

143360
− 45p1

2 p2
2 q1

2

512

+
81p1

4 q1
2

2560
+

3987p2
6

4587520
+

2313p1
2 p2

4

143360
+

351p1
4 p2

2

5120
+

27p1
6

2560
(% o16)

(% i17) define(N2(q1,p1,q2,p2),%)$

And, finally, the reduction to Hopf variables can be achieved as follows:

6 Takato and Vallejo

(% i18) phopf6res12(expr):=block(
[aux,list_coeff,eq,eqs,W,Wp,U,Up,a,l,
w:[q1ˆ2+p1ˆ2,4*q2ˆ2+p2ˆ2],
u:[-4*p1*q1*q2-p2*q1ˆ2+p1ˆ2*p2,

-2*q1ˆ2*q2+2*p1ˆ2*q2+2*p1*p2*q1]],
W:makelist(w[1]ˆi*w[2]ˆ(3-i),i,makelist(j,j,0,3)),
Wp:makelist(%rho[1]ˆi*%rho[2]ˆ(3-i),i,makelist(j,j,0,3)),
U:makelist(u[1]ˆi*u[2]ˆ(2-i),i,makelist(j,j,0,2)),
Up:makelist(%rho[3]ˆi*%rho[4]ˆ(2-i),i,makelist(j,j,0,2)),
a:makelist(a[k],k,1,length(W)+length(U)),
aux:facsum(expandwrt(expr-sum(a[i]*W[i],i,1,length(W))-

sum(a[i+length(W)]*U[i],i,1,length(U)),
q1,p1,q2,p2),

q1,p1,q2,p2),
list_coeff:coeffs(aux,q1,p1,q2,p2),
l:length(list_coeff),
for j:2 thru l do (k:j-1, eq[k]:first(list_coeff[j])),
eqs:makelist(eq[k],k,1,l-1),
subst(first(algsys(eqs,a)),

sum(a[i]*Wp[i],i,1,length(Wp))
+sum(a[i+length(W)]*Up[i],i,1,length(U)))

)$
(% i19) phopf6res12(N2(q1,p1,q2,p2));

− ρ24 (5120%r1 − 63)

5120
− ρ23 (5120%r1 − 351)

5120
+ ρ21 ρ2 %r1 (% o19)

+
3987ρ32
4587520

+
2313ρ1 ρ

2
2

143360
+

27ρ31
2560

(% i20) subst(%r1=0,expand(%));

63ρ24
5120

+
351ρ23
5120

+
3987ρ32
4587520

+
2313ρ1 ρ

2
2

143360
+

27ρ31
2560

(% o20)

Of course, a similar analysis can be done for N1. The resulting expression appears in [2] (see equa-
tion (16) in that paper), applied to the determination of the existence of closed, stable orbits in the
Pais-Uhlenbeck oscillator.

3. Numerical study: Poincaré sections
Given a Hamiltonian H ∈ C∞(R2n), the Maxima package poincare provides several functions
to study its Poincaré sections. The functionality of this package, and even the syntax, is similar
to the package DEtools in MapleTM but it offers two advantages: first, it uses free (both as in
‘freedom’ and as in ‘free beer’) software and, second, it is almost three times faster, thus being a
serious competitor for long computations. Moreover, as we will see in Section 4, in conjunction with
KETCindy animation movies describing the evolution of the system in phase space can be easily
constructed.

It should be stressed that Maxima is a CAS, not a language intended for numerical compu-
tations such as Octave. Thus, speed in computations is not one of its goals, nor was it designed
to achieve it. However, the fact that LISP is its underlying programming language, allows the pos-
sibility of writing specialized routines using declared variables, that can be then compiled. The
package poincare uses a compiled version of the Runge-Kutta method, called rkfun, developed
by Richard Fateman (http://people.eecs.berkeley.edu/˜fateman/lisp/rkfun.
lisp), and this is the ultimate reason for the gain in speed.

http://people.eecs.berkeley.edu/~fateman/lisp/rkfun.lisp
http://people.eecs.berkeley.edu/~fateman/lisp/rkfun.lisp

Hamiltonian systems: symbolical, numerical and graphical study 7

The function called hameqs constructs the Hamiltonian equations for a given Hamiltonian
H(q1, p1, . . . , q2, p2). Any names can be used for the variables, but they must be given in pairs
“coordinate, conjugate momentum”. A good choice (used internally) is (q1, p1, ..., qn, pn). A name
must be provided for the components of the Hamiltonian vector field

XH(q1, p1, ..., qn, pn) =

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

Once a name, say XH , is chosen, the components of the Hamiltonian vector field will be globally
defined functions XHj with 1 ≤ j ≤ 2n, where n is the number of degrees of freedom, and will be
available to Maxima. Notice that, for instance,

XH1(t, q1, p1, ..., qn, pn) =
∂H

∂p1

and

XH2(t, q1, p1, ..., qn, pn) = −∂H
∂q1

.

Although we will work with autonomous Hamiltonian systems, the components XHj returned by
this command will have the set (t, q1, p1, ..., qn, pn) as arguments. This is necessary to maintain
consistency with the rkfun routine (implementing the Runge-Kutta method), which can work with
both, autonomous and non-autonomous systems.

The function poincare3d constructs the projection of the Hamiltonian orbits along a certain
coordinate which is given as an argument coord. Other arguments are: a list of initial conditions
inicond = [q1(0), p1(0), . . . , qn(0), pn(0)], and a list characterizing the time domain timestep =
[t, tini, tfin, step]. Thus, the syntax is poincare3d(H,name,inicond,timestep,coord).
The package is loaded with
(%2i1) batch("poincare.mac")$

As a simple example, let us construct the 3D−surface of a couple of harmonic oscillators (this
is based on Chapter 9 of [9], where a similar discussion using MapleTM is presented):
(%i22) H(x,v,q,p):=w1*(xˆ2+vˆ2)/2+w2*(qˆ2+pˆ2)/2$

The corresponding Hamiltonian equations are:
(%i23) hameqs(H,XH);

[v w1 ,−w1x, pw2 ,−q w2] (%o7)

and we fix the values of the frequencies w1 = 1, w2 = 3 so they are commensurable:
(%24) [w1,w2]:[8,3]$

Next we plot the 3D Poincaré surface by projecting along the p coordinate (thus, the resulting
graphics has (x, v, q) coordinates):
(%i25) data1:poincare3d(H,XH,[0.3,0.5,0,1.5],[t,0,40,0.01],p)$

(%i26) draw3d(title="Poincare section in 3D",
dimensions=[350,500],view=[85,30],
xlabel="x",ylabel="v",zlabel="q",
xtics=1,ytics=1,
surface_hide=true,color="light-blue",

explicit(0,x,-1.35,1.35,y,-1.35,1.35),
point_size=0,points_joined=true,color=black,line_width=1,

points(data1),
user_preamble="set xyplane at -1.8",color="light-blue",

explicit(-1.8,u,-1.5,1.35,v,-1.35,1.35),
point_size=1,point_type=filled_circle,color=red,points_joined=false,

points([[-0.56,0,-1.78],[0.28,-0.52,-1.78],[0.3,0.48,-1.78],
[-0.56,0,0],[0.28,-0.52,0],[0.3,0.48,0]]));

8 Takato and Vallejo

(%t26,%o26)

The function poincare2d constructs the surface of section selected by a list of arguments
of the form scene = [q0, c, qi, qj], that is, the surface q0 = c in which coordinates [qi, qj] are
shown. The method used in the computation of the Poincaré surface is that described in the paper
[5] we select a set of initial conditions, follow the corresponding orbit numerically, and detect where
we have crossed the q0 = c surface by looking at changes of sign in the list of values for this
coordinate minus c. In the previous example, we plotted the 3D−Poincaré surface of a couple of
commensurable oscillators, and we included a 2D−section (corresponding to q = 0) showing that
the periodicity of the system reflects itself in the discrete character of the 2D−Poincaré map (only
three points appear in it). Now we can check this directly with poincare2d (notice the selection
of the q = 0 section in the last argument, [q,0,x,v]):
(%i27) data2:poincare2d(H,XH,[0.3,0.5,0,1.5],[t,0,40,0.01],[q,0,x,v])$

(%i28) draw2d(title="Poincare section in 2D",
xlabel="x",ylabel="v",
xtics=0.2,
point_size=1,point_type=7,color=red,
points_joined=false,proportional_axes=xy,

points(data2));

(%t28,%o28)

Hamiltonian systems: symbolical, numerical and graphical study 9

For a different example, let us consider the case of a elastic pendulum [4], with Hamiltonian
(%i29) H(q1,p1,q2,p2):=(p1ˆ2+p2ˆ2)/2+(q1ˆ2+q2ˆ2)/2-0.75*q1ˆ2*(1+q2)/2$

We can obtain an analytic expression for p2 once the energy E, and the initial values of
(q1, p1, q2) are known. Here we work with E = 0.00875:
(%i30) solve(H(q1,p1,q2,p2)=0.00875,p2);

[p2 = −
√
−4q22 + 3q12 q2 − q12 − 4p12 + 0.07

2
, p2 =

√
−4q22 + 3q12 q2 − q12 − 4p12 + 0.07

2
]

(%o30)

Let us define the corresponding functions:
(%i31) define(f(q1,p1,q2),rhs(first(%)))$

(%i32) define(g(q1,p1,q2),rhs(second(%th(2))))$

Now, we compute the q2 = 0 surface of section, for enough initial conditions (q1, p1, q2) (10
different sets) using the positive value of p2, and joining all the resulting points in a big list of
2D−coordinates called points1:
(%i33) for j:1 thru 10 do data1[j]:poincare2d(H,XH,

[0.15,j/100,0.001,g(0.15,j/100,0.001)],[t,0,1000,0.01],[q2,0,q1,p1])$
For future reference, here is the time invested in the computation:

(%i34) time(%);

[17.222] (%o61)

(%i35) points1:xreduce(append,create_list(data1[j],j,makelist(k,k,1,10)))$

The following figure is the plot of these points on the Poincaré surface:
(%i36) draw2d(title="Poincare sections E=0.00875",

xlabel="q1",ylabel="p1",
point_type=7,point_size=0.1,

points(points1)
);

(%t36,%o36)

In order to complete the section, we must select another set of initial conditions, whose orbits
pass through the empty region at the center. This time we use negative values of the momentum p2:
(%i37) for j:1 thru 10 do data2[j]:poincare2d(H,XH,

[2*j/100,0,j/100+0.0025,f(2*j/100,0,j/100+0.0025)],[t,0,1000,0.01],
[q2,0,q1,p1])$

10 Takato and Vallejo

(%i38) time(%);

[17.369] (%o38)

The 2D−dimensional coordinates of the corresponding points are stored in the list points2
and then plotted with the aid of the draw2d command, which admits lots of optional arguments to
fine tuning the appearance of the figure. Here, we specify that points be represented by filled circles
(point type=7) with a given radius size (point size=0.1):

(%i39) points2:xreduce(append,create_list(data2[j],j,makelist(k,k,1,10)))$

(%i40) draw2d(title="Poincare sections E=0.00875",
xlabel="q1",ylabel="p1",
point_type=7,point_size=0.1,

points(points2)
);

(%t40,%o40)

The full Poincaré section is obtained by joining both sets of points. The Maxima command
append does exactly that when two lists are given:

Hamiltonian systems: symbolical, numerical and graphical study 11

(%i41) draw2d(title="Poincare sections E=0.00875",
xlabel="q1",ylabel="p1",
point_type=7,point_size=0.1,

points(append(points1,points2))
);

(%t41)

We have done our computations with a fixed value for the energy E = 0.00875. The same
steps can be followed to consider other values. The collection of Poincaré sections so obtained is a
valuable tool to visualize the dynamics of the system. In Section 4 we will see how to put all these
sections together in the form of a movie animating the evolution in phase space.

4. Graphical study with KeTCindy
KETpic is a macro package involving several mathematical software for producing high-quality fig-
ures to be inserted into LATEX documents, developed by one of the authors (ST). It can use the DGS
Cinderella as a graphical interface through KETCindy, another set of macros which acts as a inter-
face between them. The reason for choosing Cinderella is that it has its own scripting language,
CindyScript, featuring a simple to understand syntax. Using CindyScript, we have added a layer to
KETCindy to call other software such as Maxima, R, Fricas, Risa/Asir or C. We refer to previous
works for more details on the CindyScript syntax [14, 15, 16, 17]; here we proceed in a more direct
way, explaining how KETCindy calls to Maxima by way of an example devoted to find the indefinite
and definite integrals of a function. For this, the following code must be inserted into the script editor
of Cinderella:
cmdL=[
"f(x):=sin(x)+cos(2*x)",[],
"ans1:integrate",["f(x)","x"],
"ans2:integrate",["f(x)","x",0,"%pi/3"],
"ans1::ans2",[]

];
CalcbyM("ans",cmdL,[""]);

Here cmdL is a list of Maxima commands which are parsed sequentially. By executing CalcbyM
in the next line, a file called simpleexampleans.txt in the directory ketwork with the con-
tents given below will be created:

12 Takato and Vallejo

writefile("ketwork/simpleexampleans.txt")$/*##*/
powerdisp:false$/*##*/
display2d:false$/*##*/
linel:1000$/*##*/
f(x):=sin(x)+cos(2*x)$/*##*/
ans1:integrate(f(x),x)$/*##*/
ans2:integrate(f(x),x,0,%pi/3)$/*##*/
disp(ans1)$/*##*/
disp(ans2)$/*##*/
closefile()$/*##*/
quit()$/*##*/

These instructions will be processed by Maxima, and the results will be passed to KETCindy
to generate either direct graphical output in Cinderella or a LATEX file with the corresponding code
to generate the graphics that can be inserted in another document. In more detail, calcbyM will
sequentially do the following:

1. Create the txt file to be processed by Maxima.
2. Create a batch file kc.sh(bat) to call Maxima.
3. Call a Java program to execute the batch file above.
4. Hand the result from Maxima, parsed as strings, to KETCindy.

In the above example, the result ans is a list containing two strings:
[sin(2*x)/2-cos(x),(sqrt(3)+2)/4]

This result can be directly used in KETCindy; for example, we can draw the graph of the
indefinite integral with the following command:
Plotdata(‘‘1’’,ans_1,’’x’’);

x

y

O

As mentioned, KETCindy can also produce a TEX animation. We illustrate this feature with the
Poincaré sections of an elastic pendulum as an example. We begin by defining Elist as a list of
increasing energies:
Elist=[0.00875,0.0125,0.01625,0.02,0.02375,0.0275,0.03125,0.035,0.03875];

Next, we generate the corresponding data for each energy using Maxima with the package
poincare. The following list of Maxima commands is just the same as the one described in Section
3:
cmdL1=concat(Mxload("rkfun.lisp"),Mxbatch("pdynamics.mac"));
cmdL1=concat(cmdL1,Mxbatch("poincare.mac"));
cmdL1=concat(cmdL1,[
"H(q1,p1,q2,p2):=(p1ˆ2+p2ˆ2)/2+(q1ˆ2+q2ˆ2)/2-0.75*q1ˆ2*(1+q2)/2",[],
"ans:solve(H(q1,p1,q2,p2)=E,p2)",[],
"define(f(q1,p1,q2),rhs(first(%)))",[],
"define(g(q1,p1,q2),rhs(second(%th(2))))",[]

]);
forall(1..9,nn,

Hamiltonian systems: symbolical, numerical and graphical study 13

cmdL2=[
"E:"+textformat(Elist_nn,6),[],
"for j:1 thru 10 do data1[j]:poincare2d(H,XH,[0.15,j/100,0.001,

g(0.15,j/100,0.001)],[t,0,1000,0.01],[q2,0,q1,p1])",[],
"points1:xreduce(append,create_list(data1[j],j,makelist(k,k,1,10)))",[],
"for j:1 thru 10 do data2[j]:poincare2d(H,XH,[2*j/100,0,j/100+0.0025,

f(2*j/100,0,j/ 100+0.0025)],[t,0,1000,0.01],[q2,0,q1,p1])",[],
"points2:xreduce(append,create_list(data2[j],j,makelist(k,k,1,10)))",[],
"points1::points2",[]

];
cmdL=concat(cmdL1,cmdL2);
CalcbyM("Points",cmdL,[mr,"Wait=40"]);

);

Each result is stored in a text file (with extension txt) with its name constructed appending a
number sequentially to the prefix ptdata. Finally, we define a function mf(nn), which describes
the animation frame numbered nn.
mf(nn):=(
regional(tmp,Points1,Points2);
Com1st("ReadOutData(’ptdata"+text(nn)+".txt’)");
Setcolor("red");
Pointdata("1","Points",[red,"Size=0.4"]);
Setcolor("black");
Expr(D,"c","E="+textformat(Elist_(nn),6));

);
Setpara("poincare","mf(nn)",1..9,

["m","Frate=3","Scale=0.7","OpA=[loop]"]);

The animation is generated by putting together all the frames with the command Mkanimation().
The result, shown below, requires Adobe Acrobat ReaderTM for playback2:

This graphical analysis illustrates several features common to any perturbed system of the
form H = H0 + εH1, where H0 is an integrable Hamiltonian and ε ∼ 0. Starting at low values of

2Currently, it is the only PDF reader capable of that. Some versions of the KDE reader Okular have been reported to be able
of reproducing some animations, but we have not had success when using it.

14 Takato and Vallejo

the energy, many closed curves can be detected, corresponding to periodic motions of the system.
Those closed curves are intersections of the tori determined by the non-perturbed part with the
Poincaré surface. As the energy of the systems increases, the tori are destroyed and the trajectories
initially confined to them start wandering all over the phase space. At a certain point, we can not
distinguish any periodicity and the behavior is completely chaotic. This generic picture is the content
of the famous KAM (for Kolgomorov, Arnold and Moser) theorem, although this theorem refers to
increasing values of the perturbation parameter rather than the total energy (see [6] for the application
to this case, along with some comments on the applicability of the KAM theorem, which is not
immediate).

5. Conclusions
The symbolic computation of second-order normal form for perturbed Hamiltonian systems can be
quickly computed in closed form with the aid of the Maxima CAS, directly in terms of the Hopf
invariants. The package pdynamics shows a practical implementation.

The Maxima package poincare can reproduce the results appearing in textbooks and re-
search papers dealing with Hamiltonian systems. The graphical output quality is quite good, compa-
rable (to say the least) to that of commercial software, but at no cost (for comparison, MapleTM in its
student’s version costs 1 000USD.) Regarding computation times, the Maxima version outperforms
commercial competitors: the heaviest computation in this paper is executed in (%o38) while, for in-
stance, the same takes 50 seconds in MapleTM 3 (as can be seen in the worksheet http://galia.
fc.uaslp.mx/˜jvallejo/ElasticPendulum-MapleSession.pdf, for which the same
computer was used). Maxima only requires a third of this time.

On the other hand, KETCindy in combination with Maxima can produce TEX animations, ready
for use in complex documents which require high-quality graphics, such as research papers or hand-
outs to be used in teaching. The union of these features results in an easy-to-use, powerful integrated
system particularly suitable for studying the dynamics of Hamiltonian systems.

References
[1] M. Avendaño–Camacho, J. A. Vallejo and and Yu. Vorobjev: A simple global representation for second-

order normal forms of Hamiltonian systems relative to periodic flows. J. of Phys. A: Math. and Theor. 46
(2013) 395201.

[2] M. Avendaño–Camacho, J. A. Vallejo and and Yu. Vorobjev: A perturbation theory approach to the sta-
bility of the Pais-Uhlenbeck oscillator. J. of Math. Phys. 58 (2017) 093501.

[3] S. Blanes and F. Casas: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca
Raton, FL, 2016.

[4] R. Carretero–González, H. N. Núñez–Yépez and A. L. Salas–Brito: Regular and chaotic behaviour in an
extensible pendulum. Eur. J. Phys. 15 (1994) 139–148.

[5] E. S. Cheb–Terrab and H. P. Oliveira: Poincaré sections of Hamiltonian Systems. Comp. Phys. Comm. 95
2–3 (1996) 171–189.

[6] R. Cuerno, A. F. Rañada and J. J. Ruiz-Lorenzo: Deterministic chaos in the elastic pendulum: A simple
laboratory for nonlinear dynamics. Am. J. of Physics 60 73 (1992) 73–79.

[7] R. H. Cushman: Geometry of perturbation theory. In “Deterministic chaos in General Relativity”, Editors:
D. Hobill et al. Springer Verlag 1994, 89–101.

[8] R. H. Cushman and L. Bates: Global aspects of classical integrable systems. Birkhauser, Basel, 1997.
[9] S. Lynch: Dynamical Systems with Applications using Maple. Birkhauser, Basel, 2001.

3Used here: Maple 2016:1a (build 1133417). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. Maxima
version was 5.38.0.

http://galia.fc.uaslp.mx/~jvallejo/ElasticPendulum-MapleSession.pdf
http://galia.fc.uaslp.mx/~jvallejo/ElasticPendulum-MapleSession.pdf

Hamiltonian systems: symbolical, numerical and graphical study 15

[10] J. Moser: Regularization of Kepler’s problem and the averaging method on a manifold. Comm. on Pure
and Appl. Math. XXIII (1970) 609–636.

[11] M. Ostrogradsky: Memoires sur les equations differentielles relatives au problème des isoperimètres.
Mem. Acad. St. Petersbourg, VI 4 (1850) 385517.

[12] M. Pavšič: Stable self-interacting Pais-Uhlenbeck oscillator. Mod. Phys. Letters A28 36 (2013) 1350165.
[13] G. Schwarz: Smooth funtions invariant under the action of a compact Lie group. Topology 14 (1975)

63–68.
[14] S. Takato: What is and how to Use KETCindy–Linkage Between Dynamic Geometry Software and KETCindy

Graphics Capabilities. In “Mathematical Software –ICMS 2016”, Editors: G-M. Greuel et al. Lecture
Notes in Computer Science 9725, Springer, Cham, 2016.

[15] S. Takato, A. McAndrew, J. A. Vallejo and M. Kaneko: Collaborative Use of KETCindy and Free Computer
Algebra Systems. Mathematics in Computer Science 11 3–4 (2017) 503–514.

[16] S. Takato: Brachistochrone Problem as Teaching Material–Application of KETCindy with Maxima. In
“Computational Science and Its Applications–ICCSA 2017”, Editors: O. Gervasi et al. Lecture Notes
in Computer Science 10407. Springer, Cham, 2017.

[17] S. Takato and J. A. Vallejo: Interfacing Free Computer Algebra Systems and C with KETCindy. In “Com-
puter Algebra Systems in Teaching and Research”, Siedlce University of Natural Sciences and Humanities
Volume 6 (2017) 172–185.

Acknowledgment
The authors express their gratitude to Masataka Kaneko (Tōhō University) and Yasuyuki Nakamura
(Nagoya Institute of Technology) for many fruitful discussions about the topics in this paper. Thanks
are also due to Richard Fateman for developing rkfun.

Setsuo Takato
Faculty of Sciences
Tōhō University
Funabasi (Chiba) Japan
e-mail: takato@phar.toho-u.ac.jp

José A Vallejo
Faculty of Sciencies
State University of San Luis Potosı́
San Luis Potosı́ (SLP) México
e-mail: jvallejo@fc.uaslp.mx

	1. Introduction
	2. Symbolic study of Hamiltonian systems: normal forms
	3. Numerical study: Poincaré sections
	4. Graphical study with KeTCindy
	5. Conclusions
	References
	Acknowledgment

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

