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Abstract We characterise continuity of composition operators on weighted
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1 Introduction

In this note, we prove a result concerning composition operators on JB∗−triples.
These triples are Banach spaces which carry a certain algebraic structure.
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They form quite a large class, including Hilbert spaces and C∗−algebras (see
example 1 below), and are interesting from both the mathematical and the
physical point of view. On the mathematical side, they play a rôle similar
to that of semisimple Lie algebras in the study of symmetric finite dimen-
sional manifolds, but in the context of infinite dimensional spaces (see [26]
and references therein). Also, JB∗−triples are intimately related to Jordan
algebras, which are long known to appear in quantum mechanics (see [12,20,
16], or [27] for a recent account). JB∗−triples have been found to be useful
in solving Yang-Baxter equations ([22]), constructing Lie superalgebras (see
[17] and [24]) and in the study of multifield integrable systems (see [1] or [25]
and references therein).

With respect to composition operators, let us recall that on a classical
level the coherent states of a physical system are described by holomorphic
functions on the classical phase space (see [4]). When passing to the quantum
framework, one deals with the general concept of state over B(H) (the alge-
bra of bounded linear operators on a Hilbert space H), which is a normalized
positive linear functional on B(H) (see [2]). In these contexts, composition
operators can be seen as “dictionaries” translating these states from one ref-
erence frame to another when we have a holomorphic transformation between
the underlying spaces φ : X → Y (in this case, the composition operator as-
sociated to φ, Cφ, is a map Cφ : H(Y ) → H(X), where H(X) is the space
of holomorphic mappings from X to C).

Both situations (the classical and the quantum ones), are generalized in
the study of weighted spaces of holomorphic functions on the unit ball B of
a Banach space X, denoted Hv(B). These spaces have been widely studied
in recent years, and are quite well understood. The first case considered was
that of B being the unit disc or a domain in C or Cn. Special interest has
been given to the study of composition operators between these spaces; we
refer to [6,8,9] and particularly to the recent surveys [5,7] and the references
therein for information about the subject. Some study has also been devoted
to the situation when BX is the open unit ball of a Banach space X (see e.g.
[3,13,14]). Some of the results in [8] were generalised in [14] to the Banach
space setting. One result given in [14] characterizes continuity of composition
operators when B is the open unit ball of a Hilbert space. The proof relies on
the fact that there exist enough automorphisms of B. In this note, we show
that this requirement is also fulfilled if we consider unit balls of JB∗−triples.

2 Preliminary results

We begin by fixing notation and some results; for details see [14]. Let X
be a Banach space and BX its open unit ball. By a weight we mean any
continuous bounded mapping v : BX →]0,∞[. We denote by H(BX) the
space of holomorphic functions f : BX −→ C. A set A ⊂ BX is said to be
BX -bounded if d(A,X \BX) > 0. The subspace of H(BX) consisting of those
functions which are bounded on the BX -bounded sets is denoted by Hb(BX).
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Following [8] and [13] we consider

Hv(BX) = {f ∈ H(BX) : ‖f‖v = sup
x∈BX

v(x)|f(x)| <∞},

where v is a weight. With the norm ‖ ‖v, the spaceHv(BX) is a Banach space.

Given a weight v, we consider the following associated weight ṽ(x) =
1/ sup‖f‖v≤1 |f(x)| (see [6,8,14]). We say that a weight v is norm-radial if
v(x) = v(y) for every x, y such that ‖x‖ = ‖y‖. If v is norm-radial and
non-increasing (with respect to the norm) then ṽ is also norm-radial and
non-increasing.

A weight v satisfies Condition I if infx∈rBX
v(x) > 0 for every 0 < r < 1

([13]). If v satisfies Condition I, then Hv(BX) ⊆ Hb(BX) ([13, Proposition
2]).

Definition 1 Let X and Y be Banach spaces and φ : BX → BY a holomor-
phic mapping. The composition operator associated to φ is defined by

Cφ : H(BY ) −→ H(BX) , f  Cφ(f) = f ◦ φ.

Cφ is clearly linear. Denoting by τ0 the compact-open topology, Cφ is also
(τ0, τ0)-continuous. Given any two weights vX , vY defined on BX , BY respec-
tively, we consider the restriction Cφ : HvY

(BY ) → HvX
(BX) whenever this

is well defined. It is known that if Cφ is well defined, then it is continuous
(see [14]). The following result was proved in [14] (see also [8, Proposition
2.1]).

Proposition 1 Let vX , vY be two weights satisfying Condition I and φ :
BX −→ BY holomorphic. Then the following are equivalent,
(i) Cφ : HvY

(BY ) −→ HvX
(BX) is well defined and continuous.

(ii) sup
x∈BX

vX(x)
ṽY (φ(x))

<∞.

(iii) sup
x∈BX

ṽX(x)
ṽY (φ(x))

<∞.

(iv) sup
‖φ(x)‖>r0

vX(x)
ṽY (φ(x))

<∞ for some 0 < r0 < 1.

3 JB∗−triples

We intend to study composition operators on a JB∗−triple X. In this case,
BX is a bounded symmetric domain. Given a domain D in a Banach space,
a symmetry at a ∈ D is a biholomorphic map sa : D → D such that s2a = id
and sa(a) = a is an isolated fixed point. A bounded symmetric domain is
a bounded domain (or a domain biholomorphically equivalent to a bounded
domain) which has a symmetry at every point.
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Definition 2 A JB∗−triple is a Banach space Z with a triple product
{ , , } : Z3 −→ Z that is linear and symmetric in the first and third
variables (symmetric in the sense that {x, y, z} = {z, y, x} for all x, z) and
antilinear in the second variable and which satisfies,
(i) the mapping x�x, given by x�x(z) = {x, x, z} is Hermitian, σ(x�x) ≥ 0
and ‖x�x‖ = ‖x‖2,
(ii) for every a, b, x, y, z ∈ X, the Jordan triple identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}

holds.

For x, y ∈ Z, we define three mappings x�y (linear), Qx (antilinear) and
B(x, y) (linear) by

x�y(z) = {x, y, z},
Qx(z) = {x, z, x},

B(x, y) = id− 2x�y +QxQy.

We also consider the operator Bx = B(x, x)1/2 (the square root taken in the
sense of functional calculus, i.e. Bx ◦Bx = B(x, x)). It is known that ([19])

‖B−1
x ‖ =

1
1− ‖x‖2

. (1)

For background on JB∗−triples, see [15,21].

It is a well known fact that the open unit ball of a Banach space is
symmetric if and only if the space is a JB∗−triple [18]. Also, a bounded
domain D is symmetric if and only if it has a transitive group of biholo-
morphic mappings {ga}a∈D and a symmetry at some point p. In this case
the bounded symmetric domain is biholomorphically equivalent to the unit
ball of a JB∗−triple and all biholomorphic mappings on the unit ball can
be explicitly described. They are of the form Kga where K is a surjective
linear isometry and ga are Möbius type mappings that satisfy ga(0) = a and
g−1
a = g−a ([19]). These mappings can be defined from the triple product by

ga(x) = a+ (B(a, a)1/2 ◦B(x, a)−1)(x−Qx(a))

= a+Ba(
∞∑
n=0

(−x�a)na)

If s0 denotes the symmetry at 0 (i.e. x 7→ −x), the symmetry at any other
point of the unit ball a is given by ga ◦ s0 ◦ g−a.

Example 1 Examples of JB∗−triples are Hilbert spaces and C∗−algebras.
On a Hilbert space the triple product is given by {x, y, z} = 1/2((x|y)z +
(z|y)x). The Möbius mappings for Hilbert spaces were defined by Renaud
in [23]. If Z is a C∗−algebra, the triple product is given by {x, y, z} =
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1/2(xy∗z + zy∗x). Another example of JB∗−triples that includes the two
previous ones are J∗-algebras, that is closed subspaces of L(H,K) (H and
K Hilbert spaces) which are closed under A 7→ AA∗A (cf. [15]).

As already mentioned, the symmetries of a bounded symmetric domain
can be defined using a set of Möbius-like mappings. Let us show that these
vector Möbius mappings behave in the same way as the scalar ones when we
take the supremum on a sphere (a circle in the scalar case).

Lemma 1 Let B be a bounded symmetric domain (i.e., the open unit ball of a
JB∗−triple Z) and {ga}a∈B the transitive group of biholomorphic mappings
that define the symmetries. Then, for each 0 < r < 1

sup
‖x‖=r

‖ga(x)‖ =
‖a‖+ r

1 + r‖a‖

and this supremum is attained at some point.

Proof First, for any bounded symmetric domain we show that ‖ga(x)‖ ≤
‖a‖+‖x‖

1+‖a‖·‖x‖ . It is well known ([21]) that

1
1− ‖ga(x)‖2

= ‖B−1
a ◦B(a, x) ◦B−1

x ‖.

In particular, using (1) we get

1
1− ‖ga(x)‖2

≤ 1
1− ‖a‖2

(1 + ‖a‖ · ‖x‖)2 1
1− ‖x‖2

.

Hence

‖ga(x)‖ ≤
‖a‖+ ‖x‖

1 + ‖a‖ · ‖x‖
.

Next we show that the bound is attained, in the sense that there exists
x ∈ B, ‖x‖ = r with ‖ga(x)‖ = ‖a‖+r

1+r ‖a‖ . Clearly we may assume a 6= 0. Let
us consider Za the JB∗−subtriple of Z generated by a, that is, the smallest
(closed) JB∗−subtriple of Z that contains a. It is obviously enough to find
x ∈ Za attaining the bound. A result of Kaup ([18, Proposition 5.3]) shows
that for any JB∗-triple and a ∈ Z, Za is isometrically (triple) isomorphic to
C0(Ω), where Ω ⊆ R+ satisfies Ω∪{0} is compact. The Möbius maps on the
unit ball of Za, once composed with this isomorphism, give ga(z) = a+z

1+ā z ,
where a and z are in the open unit ball of C0(Ω). For z = r

‖a‖a, we have
z ∈ C0(Ω) and ‖z‖ = r. Hence

ga(z) =

(
1 + r

‖a‖

)
a

1 + |a|2 r
‖a‖

=
r + ‖a‖

‖a‖+ r |a|2
a.
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Now, ‖ga(z)‖ = (r+‖a‖)
∥∥∥ a
‖a‖+r |a|2

∥∥∥ = (r+‖a‖) supω∈Ω
|a|

‖a‖+r |a|2 (ω). But

since |a| ≤ ‖a‖ ≤ 1 and r < 1, it turns out that |a|
‖a‖+r |a|2 is an increasing

function of |a|, that is
∥∥∥ a
‖a‖+r |a|2

∥∥∥ = 1
1+r ‖a‖ . This gives

‖ga(z)‖ =
‖a‖+ ‖z‖

1 + ‖a‖ · ‖z‖

which is what was required.

4 A result for composition operators

The following result is a very well known version of the Schwarz lemma for
Banach spaces (cf. [10]).

Lemma 2 Let X and Y be Banach spaces and f : BX −→ BY holomorphic
with f(0) = 0. Then, for all x ∈ BX ,

‖f(x)‖Y ≤ ‖x‖X .

We can now prove a generalization of [8, Theorem 2.3] and [14, Theorem
4.1]. The statement is slightly different from the previous cases but the proof
is basically the same, up to technical changes. We include a proof for the
sake of completeness.

Theorem 1 Let X be any Banach space and Z a JB∗−triple. Let vZ be a
norm-radial and non-increasing weight on Z and vX be a weight on X for
which there exists K > 0 such that

if z ∈ Z and x ∈ X with ‖z‖ ≤ ‖x‖, then vZ(z) ≥ KvX(x).
Then every composition operator Cφ : HvZ

(BZ) −→ HvX
(BX) is continuous

for every holomorphic map φ : BX → BZ if and only if the function l(r) :=
ṽZ(z) for ‖z‖ = 1− r, 0 < r < 1 satisfies l(s) ≤Ml(s/2) for s close enough
to 0.

Proof First, if φ(0) = 0 then by the general version of the Schwarz Lemma
we have ‖φ(x)‖Z ≤ ‖x‖X and Cφ is continuous. For each a ∈ BZ we have
ga : BZ → BZ . If every Cga

is continuous then all Cφ are continuous. Indeed,
given φ, let a = φ(0) and define ψ = g−a ◦ φ. Then ψ(0) = 0 and Cφ =
Cψ◦Cga

is continuous. Therefore it is enough to prove that Cga
: HvZ

(BZ) →
HvZ

(BZ) is continuous for all a ∈ BZ if and only if, for all 0 < s < s0,

l(s) ≤Ml(s/2) (2)

Assume that all Cga
are continuous. By Proposition 1, for each a ∈ BZ we

can findMa > 0 such that ṽZ(z) ≤MaṽZ(ga(z)) for all z ∈ BZ . We also know
that sup‖z‖=r ‖ga(z)‖ = ‖a‖+r

1+r‖a‖ . Since vZ is norm-radial and non-increasing
so also is ṽZ . Hence the previous can be rewritten as

l(1− r) ≤Mal

(
1− ‖a‖+ r

1 + r‖a‖

)
= Mal

(
(1− r)(1− ‖a‖)

1 + r‖a‖

)
.
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Now, for 1/2 < r < 1 we have

l

(
(1− r)

1− ‖a‖
1 + ‖a‖

)
≤ l

(
1− ‖a‖+ r

1 + r‖a‖

)
≤ l

(
(1− r)

1− ‖a‖
1 + ‖a‖/2

)
. (3)

Let us fix a with ‖a‖ = 2/5 and use the second inequality in (3) to get
l(1− r) ≤Mal

(
(1−r)(1−‖a‖)

1+r‖a‖

)
≤Mal( 1−r

2 ) for 1/2 < r < 1. This shows that
(2) holds.

Let us assume now that (2) holds. Given any c > 0 we can choose n ∈ N
with c < 2n. If s < s0, then l(s) ≤ Kn l(s/c). Given any a ∈ BZ , let us take
c = 1+‖a‖

1−‖a‖ and use the first inequality in (3) to get that there exists Ka > 0
such that holds.

l(s) ≤ Kal(s/c) ≤ Kal

(
1− ‖a‖+ (1− s)

1 + (1− s)‖a‖

)
for s < s0 ≤ 1/2. Now, for s0 ≤ t ≤ 1, since l is strictly positive, the mapping
s  (l(s))(l(1 − ‖a‖(1−s)

1+(1−s)‖a‖ ))
−1 is well defined and continuous; hence it has

a maximum. Thus for any fixed a ∈ BZ we can find a constant Ma > 0 such
that for 0 < r < 1 and ‖z‖ = r,

ṽZ(z) ≤Ma l

(
1− ‖a‖+ r

1 + r‖a‖

)
≤Ma ṽZ(ga(z)).

Applying Proposition 1, Cga
is continuous.

Several equivalent conditions on a weight v so that l satisfies (2) are given
in [11, Lemma 1] for the one-dimensional case. Most of the proofs can be triv-
ially adapted to the infinite dimensional case.

By taking X = Z and vX = vZ in Theorem 1 we get

Corollary 1 Let v be a norm-radial and non-increasing weight on a JB∗−triple
Z. Every composition operator Cφ on the weighted Banach space Hv(BZ) is
continuous for every self map φ on BZ if and only if the function l(r) := ṽ(z)
for ‖z‖ = 1− r, 0 < r < 1 satisfies l(s) ≤Ml(s/2) for s close enough to 0.
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14. Garćıa, D., Maestre, M., Sevilla-Peris, P.: Composition Operators between
weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci.
Fenn. Math. 29, 81–98 (2004)

15. Harris, L.A.: A generalization of C∗-algebras. Proc. London Math. Soc. 42,
331–360 (1981)

16. Jacobson, N.: Lie and Jordan triple systems. Amer. J. Math. 71, 149–170
(1949)

17. Kamiya, N., Okubo, S.: A construction of simple Lie subalgebras of certain
types from triple systems. Bull. Austral. Math. Soc. 69(1), 113–123 (2004)

18. Kaup, W.: Riemann mapping theorem for bounded symmetric domains in com-
plex Banach spaces. Math. Zeit. 183, 503–529 (1983)

19. Kaup, W.: Hermitian Jordan triple systems and the automorphisms of bounded
symmetric domains. In: K.A. Publ. (ed.) Third international conference on non
associative algebra and its applications (Oviedo, July 12-17, 1993), vol. Math.
Appl. 303, pp. 204–214. Dordrecht (1994)

20. Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. London.
Ser. A. 173, 91–116 (1939)

21. Mellon, P.: Holomorphic invariance on bounded symmetric domains. J. Reine
Angew. Math. 523, 199–223 (2000)

22. Okubo, S.: Triple products and Yang-Baxter equation. I. Octonionic and
quaternionic triple systems. J. Math. Phys. 34(7), 3273–3291 (1993)

23. Renaud, A.: Quelques proprietés des applications analytiques d’une boule de
dimension infinie dans une autre. Bull. Sci. Math. (2) 23, 129–159 (1973)

24. Salgado, G.: Triple products on gln. Submitted to publication
25. Svinolupov, S.I.: Generalized Schrödinger equations and Jordan pairs. Comm.

Math. Phys. 143(3), 559–575 (1992)
26. Upmeier, H.: Symmetric Banach manifolds and Jordan C∗-algebras, North-

Holland Mathematics Studies, vol. 104. North-Holland Publishing Co., Ams-
terdam (1985). Notas de Matemática [Mathematical Notes], 96
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