
Interfacing Free Computer Algebra Systems and C with
KETCindy

Setsuo Takato 1) and José A Vallejo 2)

1) Toho University
2-2-1 Miyama, Funabashi, Chiba, Japan

takato@phar.toho-u.ac.jp

2) Universidad Autónoma de San Luis Potośı
Lat Av Salvador Nava s/n, San Luis Potośı, México

jvallejo@fc.uaslp.mx

Abstract. LATEX is the de facto standard for scientific communication, par-
ticularly in Mathematics or Physics. We have developed KETpic and KETCindy
to make it easier to produce, embed and organize technical graphics in a LATEX
document. KETCindy involves an interaction between KETpic and Cinderella,
a Dynamic Geometry Software (DGS). The present paper illustrates its basic
usage along with a detailed treatment of its capabilities for interfacing with
free Computer Algebra Systems (CASs) and the programming language C.

1 Introduction

Many researchers and educators at different levels (ranging from high schools to
universities) use LATEX to write research papers or to produce teaching materials.
Unquestionably, LATEX is the most powerful tool to typeset complex mathematical
formulas, and is the de facto standard for scientific communication, particularly in
the fields of Mathematics or Physics. However, it presents some challenges for the
non-expert when it comes to producing, embedding and arranging graphics. This is
something notorious in the case of teaching materials. The needs of a teacher are
typically different from those of a researcher, and sometimes the kind of graphics
required to illustrate a classroom explanation are quite difficult to get using standard
LATEX packages, but very easy to obtain using, say, a DGS. Hence we developed
KETCindy, which is a macro package capable of connecting to mathematical software
such as Scilab or R to produce graphical elements and LATEX style files to arrange
components such as figures, sentences and symbols, at any place on the page of a
LATEX document. The package KETCindy is based on a previous one called KETpic.
It is comparatively easier to produce LATEX graphics with KETpic than with packages
like TikZ (although there is always a subjective component in such statements), but
a severe weakness of KETpic was the absence of a GUI (Graphical User Interface).
To remedy this, attention was turned to Cinderella, a DGS developed by Gebert
and Kortenkamp. After a fruitful collaboration with Kortenkamp, it was possible
to connect KETpic and Cinderella, and the first version of KETCindy was released
in September, 2014. Currently, Cinderella works as a GUI for KETCindy[1][2].

1

The first part of this paper is intended as an introduction of KETCindy, including
the installation process and its basic usage. Then we move on to more advanced
applications reflecting the recently added capabilities for calling some free CASs and
the programming language C from KETCindy. We offer some samples related to two
topics at a university course level: The calculus of variations (the brachistochrone)
and dynamical systems (Poincaré sections for Hamiltonian systems).

2 How to use KETCindy

We show here how to use KETCindy to produce graphics that can be inserted in
a LATEX document, such a a research paper or some handout to be delivered at
the classroom. We assume that the user’s system has already installed a complete
LATEX distribution, and a pdf viewer. Other software required by KETCindy is listed
below.

1. Cinderella, available at https://www.cinderella.de.

2. Scilab, available at http://www.scilab.org.

3. Maxima (optional), available at http://maxima.sourceforge.net. Although
optional, we will make heavy use of this CAS in Section 3.

Additional programs such as R, Fricas, Risa/Asir, Meshlab and gcc can also interact
with KETCindy. Download and install them if necessary.

2.1 Setting up and running KETCindy

The complete KETCindy package can be downloaded in zip format from http:

//ketpic.com/?lang=english, by clicking on the Dropbox - KetInstall menu
(in the current version of the web page, it is located on the left pane1). Once
downloaded, it can be extracted in any folder. The only requirement is that nested
folders in the distribution be kept nested in the same order (as some commands
use relative paths). In MS Windows, a common place to download and extract
KETCindy is under a folder with that name in Users/login-name; in that case, if
your user name contains blank spaces, please place the distribution in a folder called
ketcindy directly under C: to avoid problems. We will assume in what follows that
the root folder of the distribution is called ketcindy.

1. Open ketoutset.txt in the root folder ketcindy with a text editor. Notice
that LF is used as newline character in this text file. Adjust the paths there
as needed, particularly

PathT="(check the path of your TeX distribution)";

PathS="(check the version of scilab)";

Pathpdf="(check the name of your pdf viewer)";

PathM="(check the version of Maxima)";

1A direct link to the whole distribution is https://www.dropbox.com/sh/kzt2bgaz07n7dr0/

AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0

2

https://www.cinderella.de
http://www.scilab.org
http://maxima.sourceforge.net
http://ketpic.com/?lang=english
http://ketpic.com/?lang=english
https://www.dropbox.com/sh/kzt2bgaz07n7dr0/AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0
https://www.dropbox.com/sh/kzt2bgaz07n7dr0/AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0

2. Open dirhead.txt in the root folder and adjust the path
Dirhead="(the path of your ketcindy)";

3. Double-click template.cdy in the root folder, Cinderella will be launched. If
it does not start, refer to HowtoInstall in the folder InstallforMac(Win)

inside KetInstall.

4. In the Cinderella window, from the top menu, select Scripting > Reveal

Plugin Folder, then the folder containing the Cinderella plugins will open.
Copy into it the files dirhead.txt and KetCindyPlugin.jar that can be
found into the folder ketcindy > ketjava.

5. Close the plugins window and temporarily quit template.cdy without saving.
The previous steps have the only purpose of making the KETCindy plugins
available to Cinderella. Now they can be executed.

6. Reload template.cdy. A triangle surrounded by a white frame will appear
on the screen, provided the KETCindy libraries have been successfully loaded.

Figure 1: Cinderella window showing template.cdy.

By pressing the Figure button located at the upper left, a pdf file produced by
KETCindy will pop up. Objects on the screen can be modified at will and the
corresponding pdf will be updated. For example, the triangle on the right of
figure 2 was obtained by displacing point B to the left of its original position.

1 1

Figure 2: Two pdf graphics.

Actually, the graphics data are codes of TPIC specials for ordinary LATEX, or
pict2e commands for pdfLATEX, written in the text file template.tex. Thus,

3

this file can be used as any other just by copying it into the working directory
and using, for instance, the command \input{template.tex} to include it in
the current document. Notice that, for this to work, you should copy the style
files ketpic.sty and ketlayer.sty into the sub-folder ketpicstyle of your
working directory.

2.2 Producing graphics

Cinderella comes with its own scripting language, CindyScript, which is easy to
use and distinguishes Cinderella from other DGS. Actually, KETCindy is a macro
package for CindyScript, which means that the user should be able to write her
own scripts (composed of KETCindy commands) on the Cinderella script editor to
produce a LATEX graphics file.

Figure 3: Script Editor and Console

There is a help system explaining the syntax of most commands. For example,
to know how to use Putpoint just write Help("Putpoint") anywhere in the script
editor and execute the query by pressing the gears symbol at the upper right corner
of the editor (this serves to execute any script). The following brief explanation
appears:

Putpoint("A",[1,2],[1,A.y]);

put a point at the specified position

Putpoint3d("A",[2,1,3]);

Putpoint3d(["A",[2,1,3]]);

Putpoint3d(["A",[2,1,3]],"fix");

Putpoint3d(["A",[2,1,3]],["fix"]);

Remark: Points on the Cinderella screen are called ‘geometric points’, can be created
by using a button easily spotted in the toolbar, and can move freely. Here, we are

4

using Putpoint to create a geometric point with given coordinates in the script
editor. This procedure is often used to create a fixed (i.e., non-movable) point.

Once a script has been written and successfully executed, by pressing the Figure
button as usual, the LATEX graphics file is obtained.

2.3 Advanced examples

As a good DGS, Cinderella has an abundance of commands and tools to draw
geometric figures; however, it is not so feature-rich in producing the graph of a func-
tion, or an analytically defined figure. We have added commands to do such tasks
in KETCindy, and in this subsection we offer a couple of applications in advanced
mathematics.

2.3.1 Solution curve of a differential equation

d2x

dt2
+ 0.75

dx

dt
+ 7.71x = 0x0 = 3.87

x

y

O

Figure 4: Solution curve and the
resulting pdf.

The command Deqplot is used to draw a so-
lution curve of a given differential equation.
Its syntax is: Deqplot(name, deq, range,

initial value, options);

Here, each one of deq and range is given as a
string, and the derivative x′ = dx

dt
is written as

x‘ because Scilab uses a single quote for a string
delimiter. In the following example, the geomet-
ric points G, G, L lie on segments AB, EF, HK,
respectively, and are used to change the initial
values or coefficients of the equation.

Ketinit();

Deqplot("1","y‘‘=-L.x*y‘-G.x*y",

"t=[0,XMAX]",0,[C.y,0],["Num=200"]);

// Num is the number of partitions

// the defaut is "Num=50"

Expr(M,"e","\dfrac{d^2 x}{dt^2}+"

+L.x+"\dfrac{dx}{dt}+"+G.x+"x=0");

// "e" means east

Expr(C,"w","x_0="+C.y);

// "w" means west

Windispg();

2.3.2 Drawing a Bézier curve

Bézier curves are useful to draw a free curve or to produce interactive teaching
materials. The following commands are implemented in KETCindy.

Bezier("1",[A,D],[B,C]); // A,D are knots, B,C are control points

Mkbeziercrv("1",[[A,B,C,D],[[P,Q],[R,S],T]]); //A,B,C,D are knots

5

// P,Q,R,S,T are control points

Mkbezierptcrv("1",[A,B,C]); //Control points created automatically

Ospline("1",[A,B,C,D]) // Oshima spline

The figure below shows an example in which the first command is used.

Ketinit();

Bezier("1",[A,D],[B,C],

["Num=100","dr,2"];

PutonCurve("P","bz1");

PutonCurve("Q","bz1");

pR=P+(Q-P)/|Q-P|};

Arrowdata("1",[P,pR],

["dr,1.5"];

Pointdata("1",[P]);

Letter(P,"nw","P");

Windispg();

P

x

y

O

Figure 5: Bézier curve and the resulting pdf.

2.4 Placement of objects

When producing printed teaching materials or research papers, sometimes it is de-
sirable to place objects at specific places. Very often this is difficult in LATEX, so we
have developed style files ketlayer.sty, for ordinary LATEX, and ketlayer2e.sty,
for pdfLATEX, to deal with this issue. We explain here how to use these styles.

In ketlayer.sty we provide the layer environment, which takes two arguments:
width and height (values in millimeters). Its usage is as follows:

\begin{layer}{150}{20}

\end{layer}

Compiling the source file, the following grids appears in the pdf file:

0

10

20
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Any object can be placed at a desired, precise position by using a command such
as \putnote(+s,n,e,w,se,sw,ne,nw,c){xpos}{ypos}, where s, n, e, w, c means
south, north, east, west and center, respectively. A particular object can be placed
independently of any other. For instance, the code

\begin{layer}{150}{20}

\putnote{120}{10}{\fbox{A figure}}

\end{layer}

6

will produce the following (useful for placing comments on figures, for example)

0

10

20
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

A figure

The grid, of course, only plays a guiding rôle. Once the object has been placed
at the desired position, the value of the second argument of layer can be set to 0,
to the effect that the grid will disappear. Thus, the code:

\begin{layer}{150}{0}

\putnote{120}{10}{\fbox{A figure}}

\end{layer}

simply produces

A figure

This technique has been used, for instance, in figure 6 below to correct the LATEX

placement, which only takes into account the bounding box, or the brachistochrone
graphics in page 8.

3 Calling a CAS and C from KETCindy

The use of a CAS is very convenient when producing teaching materials, because
exact answers and analytic constructions can be obtained without effort, saving the
time invested in long but straightforward computations. Thus, it is desirable to be
able to call them from within KETCindy[3][4]. We have added new features allowing
KETCindy to call CASs such as Maxima, FriCAS or Risa/Asir. In this section, we
will take Maxima as an example. The overall process runs as follows:

1. Generate a script containing the callings to Maxima.
2. Execute the file. The result is returned by Maxima as a text or a list of texts.
3. Use the result in KETCindy.
4. Produce the pdf file.

KETCindy

Scilab LATEX

Maxima

Source File
Batch File

Returned Results (textfile)

Further Use in KETCindy

Figure 6: Flowchart of KETCindy with Maxima

7

When interfacing with Maxima, the command Mxfun is all we need to complete
the task. Other commands such as calcbyM and Mxtex may be used for multistep
and code conversion to LATEX, respectively. The output of Maxima is returned to
KETCindy in the form of a string of characters for further processing of the graphics.
Used this way, KETCindy proves itself to be a powerful companion to Maxima as
shown in the following examples.

3.1 Interactive material for the brachistochrone problem

The well-known brachistochrone problem is often used as a motivation in mathe-
matics and physics courses related to the calculus of variations. It is a touchstone
for any software whose goal is to ease the task of elaborating teaching materials, see
[5].

Let a point P start its motion without friction from point O, with the velocity
v = 0, along a curve C represented parametrically as r = (x(u), y(u)) (0 ≤ u ≤ U),
and suppose it reaches the final point B. For simplicity, place the coordinates so
that O and B lie at (0, 0) and (5, −5), respectively.

A simple calculation leads to the dif-
ferential equation of motion

du

dt
=

√
−2gy

ẋ2 + ẏ2
,

u(0) = 0 ,

(1)

and the formula for calculating total time
T as

T =

∫ U

0

√
ẋ2 + ẏ2

−2gy
du . (2)

P

B

u = u(t)

C : r = (x(u), y(u))

v

x

y

O

where ẋ =
dx

du
, ẏ =

dy

du
, and g is the acceleration of gravity. Maxima is then used:

1. To determine an inverted cycloid through B(5, 5) represented by the para-
metric equations

r =
(
a(u− sinu), −a(1− cosu)

)
(0 ≤ u ≤ U) .

The main part of the script implementing this, has the following structure:

cmdL=[

"assume",["a>0"],

"fxy:[a*(u-sin(u)),-a*(1-cos(u))]",[],

"eq:ratsimp",["(fxy[1]+fxy[2])/a"],

"so1:find_root",["eq","u","%pi/2","%pi"],

"eqr:ev",["fxy[1]-5","u=so1"],

8

"so2:find_root",["eqr","a",0,5],

"so1::so2",[]

];

CalcbyM("coeff",cmdL);println(coeff);

where cmdL is the command allowing to execute a sequence of Maxima com-
mands written in KETCindy syntax, and the results are U = 2.412011143913525,
a = 2.864585187658752.

2. To find the equation and the integrand of total time T . The relevant part of
the script is now

"assume(g>0)",[],

"fxy:",[fxy],

"d2:diff(fxy[1],u)^2+diff(fxy[2],u)^2",[],

"d2:trigsimp(d2)",[],

"d2:factor(d2)",[],

"n2:2*g*(-fxy[2])",[],

"so1:ratsimp(n2/d2)",[],

"so2:ratsimp(sqrt(so1))",[],

"so3:ratsimp(1/so2)",[],

"so2::so3",[]

]);

CalcbyM(name,cmdL,[""]);

where fxy is a string describing the parametric equations of a curve; for exam-
ple, fxy applied to a Bézier curve from O to B with control points C(c1, c2)
and D(d1, d2) would be

fxy="[3c1*(1-u)^2*u+3d1*(1-u)*u^2+5*u^3,

3c2*(1-u)^2*u+3d2*(1-u)*u^2-5*u^3]".
The resulting strings in the above script are called so2 and so3, which repre-
sent the right side of the equation (1) and the integrand in (2), respectively.
In the case of a Bézier curve, these strings are extremely complicated, as one
would expect.

3. To find total time by analytical or numerical integration. In the case of a circle
parameterized as

r =
(
5(1− cosu), −5 sinu

)
(0 ≤ u ≤ π

2
)

the total time can be obtained with the formula

T =

∫ π/2

0

√
5

2g sinu
du

Maxima can compute this integral. The relevant KETCindy command is

Mxfun("1","integrate",["sqrt(5/(2*g*sin(u)))","u",0,"%pi/2"],

["Set=assume(g>0)"]);,

9

and the result is √
5 β
(
1
4
, 1
2

)
2
√

2
√
g

= 1.324339055215268 .

In other cases, such as that of a Bézier curve, Maxima cannot compute the total
time analytically. Then, we must resort to numerical methods of integration,
some of which are implemented in Maxima. Here, because equation (1) is
defined by an improper integral, one should use quad qags instead of romberg.
Here are the relevant commands in our case, along with the result in the case
of a circle:

Mxfun("2","quad_qags",["sqrt(5/(2*9.8*sin(u)))","u",0,"%pi/2"]);

T = 1.324339055215265

In [5] we have developed an interactive teaching material to study the brachis-
tochrone problem using Bézier curves. The idea is to model the descent curve by a
Bézier one, adding two control points C and D, and asking the students to try to
minimize the descent time by displacing these new points. For this material, item
3 above is not appropriate because Maxima is called each time a control point is
displaced, so we adopt another strategy as follows:

1. Find the general formula of (1) using Maxima as in item 2 above.

2. Solve it numerically using deqplot, implemented in KETCindy.

Then the curve shape can be changed interactively, and the total time invested in
the descent is shown in real time, allowing the student to compare the results with
different curves (arcs of circumferences, parabolas, etc.)

Figure 7: Fitting the Bézier curve to the inverted cycloid.

3.2 Dynamics of Poincaré sections

Recently, we have developed a package for studying Poincaré sections of Hamiltonian
autonomous systems in Maxima, called poincare.mac, see [6]. Using this package,

10

KETCindy can produce a pdf presentation slide or even a movie showing the depen-
dence of the structural properties of Poincaré sections with respect to the energy of
the system, which can be an effective aid to illustrate the kind of behavior that the
celebrated KAM theorem describes. Here we present the well-known example of the
Hénon-Heiles model, which has the Hamiltonian

K(q1, p1, q2, p2) =
1

2
(q21 + p21 + q22 + p22) + q2 q

2
1 −

q32
3
.

The commands provided by KETCindy to generate the Poincaré sections are as
follows:

cmdL1=concat(Mxload("rkfun.lisp"),Mxbatch("poincare.mac"));

cmdL1=concat(cmdL1,[

"K(q1,p1,q2,p2):=1/2*(q1^2+p1^2+q2^2+p2^2)+q2*q1^2-q2^3/3",[],

"series1:realroots"

]);

cmdL2=[

"data1:poincare2d",

["K","XK","[-0.2,rhs(first(series1)),-0.2,0.1]",

"[t,-300,300,0.05]","[q1,0,q2,p2]"],

"data2:poincare2d",

["K","XK","[-0.2,rhs(second(series1)),-0.2,0.1]",

"[t,-300,300,0.05]","[q1,0,q2,p2]"],

"data1::data2",[]

];

where poincare2d is a function defined in poincare.mac. The function mf(s)

describes the state with total energy H = 1/s:

mf(s):=(

regional(p0,p1,tmp);

cmdH=["K(-0.2,p1,-0.2,0.1)=1/"+text(s)];

cmdL=append(cmdL1,cmdH);

cmdL=concat(cmdL,cmdL2);

CalcbyM("data",cmdL,[""]);

forall(1..(length(data)),

data_#=replace(data_#,"e-4","*10^(-4)");

data_#=replace(data_#,"e-5","*10^(-5)");

data_#=parse(data_#);

);

Setcolor("red");

Pointdata("1",data_1,["Size=2"]);

Pointdata("2",data_2,["Size=2"]);

Setcolor("black");

Expr([0.25,0.9],"c","H=1/"+text(s));

);

11

Then, KETCindy produces a set of pdf slides (that can be integrated into a short
movie) illustrating how the Poincaré sections evolve with increasing energies. The
main features of Hamiltonian dynamics are visually apparent: the persistence of
closed orbits for low energies, and the apparition of chaos for higher values.

−0.5 0.5−1 1

−0.5

0.5

H = 1/24

q1

q2

O −0.5 0.5−1 1

−0.5

0.5

H = 1/20

q1

q2

O

−0.5 0.5−1 1

−0.5

0.5

H = 1/16

q1

q2

O −0.5 0.5−1 1

−0.5

0.5

H = 1/12

q1

q2

O

−0.5 0.5−1 1

−0.5

0.5

H = 1/8

q1

q2

O −0.5 0.5−1 1

−0.5

0.5

H = 1/6

q1

q2

O

Figure 8: 2D Poincaré sections.

3.3 Interfacing C

Because Scilab and Cinderella are interpreted languages, their performance in com-
putationally demanding tasks such as the removal of hidden parts in 3D graphics is
suboptimal.

12

These tasks require a compiled language, and KETCindy has a extended functional-
ity for calling C. This is illustrated in this section by a cone with sections by planes,
the process to produce the figure below is as follows:

1. Find the silhouette lines of the cone.

2. Remove hidden parts of the cone.

3. Remove hidden parts of the axis and wire frames.

4. Compute the section of the cone by a plane.

5. Remove the hidden parts of these sections.

As stated, the removal of hidden parts takes a lot of time in Scilab (about 2–3
minutes in this case). This is the raison d’être for calling C from KETCindy. The
main features of the calling function are:

(a) Definitions of the surface function and constants are written to a header file.

(b) The call to C syntax is the same as the call to CASs ones.

(c) The result is returned to KETCindy as a text.

(d) The graphics is drawn in the usual manner within KETCindy.

The following is the main part of the script that generates the graphics:

Fd=["p","x=u*cos(v)","y=u*sin(v)","z=4-2*u",

"u=[0,2]","v=[0,2*pi]","e"];

FdC=[["x=u*cos(v)","y=u*sin(v)","z=4-2.0*pow(u,1.0)"],

"u=[0.0,2.0]","v=[0.0,2*M_PI]","e",

[100,100],[5000,3000,500],[0.02,0.1]];

MainC=["writesfbd",["sfbd"],

"writeax",["ax3d"],

"writewire",["wire",4,[[1,sqrt(2),sqrt(3)],pi/3*(1..6)]],

"writecut",["sfcut1",Assign("2*x+a*z-b",["a",0,"b",2])],

"writecut",["sfcut2",Assign("2*x+a*z-b",["a",1,"b",1.5])],

"writecut",["sfcut3",Assign("2*x+a*z-b",["a",4,"b",5])]];

Pressing the Ckc button in the Cinderella window, we obtain the following LaTeX
figure in a few seconds:

x y

z

Figure 9: Drawing a cone and its sections by planes.

13

4 Conclusions

The ability of drawing high-quality graphics and properly placing objects such as fig-
ures, are essential elements to produce teaching materials, and even research papers.
These can be easily achieved with the use of KETCindy, through the script language
present in Cinderella. Free CASs such as Maxima are also very helpful in creat-
ing computational labs sessions, because of their symbolic capabilities allowing to
tackle more advanced problems. Further challenges, as three-dimensional graphics,
are within reach with the functionality to call the C programming language. This
opens the door to the consideration of other applications requiring the collaborative
use of DGS, CASs and C in teaching and researching activities.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 15K01037, 15K00944,
and 16K01152 (ST). It was also partially supported by a CONACyT research project
CB-179115 (JAV).

References

[1] Takato S., What is and how to Use KETCindy – Linkage Between Dynamic
Geometry Software and Collaborative Use of KETCindy and Free Computer
Algebra Systems and LATEX Graphics Capabilities –, Mathematical Software –
ICMS 2016, LNCS 9725, 371–379, Springer, 2016.

[2] Kaneko M., Yamashita S., Kitahara K., Maeda Y., Nakamura Y., Kortenkamp
U, Takato S., KETCindy – Collaboration of Cinderella and KETpic, Reports
on CADGME 2014 Conference Working Group, The International Journal for
Technology in Mathematics Education, 22(4), 179–185, 2015.

[3] Takato S., McAndrew A., Vallejo J. A., Kaneko M., Collaborative Use of
KETCindy and Free Computer Algebra Systems, Mathematics in Computer Sci-
ence, 1–12, 2017, https://doi.org/10.1007/s11786-017-0303-7

[4] Kobayashi S., Takato S., Cooperation of KETCindy and Computer Algebra Sys-
tem, Mathematical Software – ICMS 2016, LNCS 9725, 351–358, Springer, 2016.

[5] Takato S., Brachistochrone Problem as Teaching Material–Application of
KETCindy with Maxima, Computational Science and Its Applications–ICCSA,
251-261, Springer, 2017

[6] Vallejo, J. A., Poincaré sections of Hamiltonian autonomous sys-
tems in Maxima. Available at http://galia.fc.uaslp.mx/~jvallejo/

PoincareDocumentation.pdf.

14

https://doi.org/10.1007/s11786-017-0303-7
http://galia.fc.uaslp.mx/~jvallejo/PoincareDocumentation.pdf
http://galia.fc.uaslp.mx/~jvallejo/PoincareDocumentation.pdf

	Introduction
	How to use K.5exETCindy
	Setting up and running K.5exETCindy
	Producing graphics
	Advanced examples
	Solution curve of a differential equation
	Drawing a Bézier curve

	Placement of objects

	Calling a CAS and C from K.5exETCindy
	Interactive material for the brachistochrone problem
	Dynamics of Poincaré sections
	Interfacing C

	Conclusions

