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Approximations and Round-Off Errors
Chapter 3

« For many engineering problems, we cannot obtain analytical
solutions.

* Numerical methods yield approximate results, results that are
close to the exact analytical solution. We cannot exactly
compute the errors associated with numerical methods.

— Only rarely given data are exact, since they originate from
measurements. Therefore there is probably error in the input
Information.

— Algorithm itself usually introduces errors as well, e.g., unavoidable
round-offs, etc ...

— The output information will then contain error from both of these
sources.

e How confident we are in our approximate result?
« The question is “how much error Is present in our calculation
and is It tolerable?”
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« Accuracy. How close Is a computed or
measured value to the true value

 Precision (or reproducibility). How close Is a
computed or measured value to previously
computed or measured values.

 |naccuracy (or bias). A systematic deviation
from the actual value.

 Imprecision (or uncertainty). Magnitude of
scatter.
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Fig. 3.2

Increasing accuracy

Increasing precision
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Significant Figures

* Number of significant figures indicates precision. Significant digits of a
number are those that can be used with confidence, e.g., the number of
certain digits plus one estimated digit.

53,800 How many significant figures?

5.38 x 104 3
5.380 x 10* 4
5.3800 x 10* 5

Zeros are sometimes used to locate the decimal point not significant
figures.

0.00001753 4
0.0001753 4
0.001753 4
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FIGURE 3.1

An automobile speedometer and odometer illustrcting the concept of a significant figure.
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Error Definitions

True Value = Approximation + Error

= True value — Approximation (+/-)

True error

triie arrnr
LI UAL LI VI

True fractional relative error =
true value

true error
true value

True percent relative error, &, = x100%
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 For numerical methods, the true value will be
known only when we deal with functions that

can be solved analytically (simple systems). In
real world applications, we usually not know

the answer a priori. Then

o = Approxmate (_errorxlOO%
®  Approximation

* lterative approach, example Newton’s method

_ Current approximation - Previous approximation  ; o,

“ 7_) Current approximation
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« Use absolute value.
« Computations are repeated until stopping criterion is
satisfied.

Pre-specified % tolerance based

‘ga ‘<gé\ on the knowledge of your

solution

If the following criterion is met

g, = (0.5x10%™)%

you can be sure that the result is correct to at least n
significant figures.
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Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a bridge
and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and
10 cm, respectively, compute (a) the true error and (&) the true percent relative error for
each case.

Solution.

(a) The error for measuring the bridge is [Eq. (3.2}]
E, =10,000 —9999 = Il cm
and for the rivet it is
E,=10-9=1cm
(b) The percent relative error for the bridgs is [Eq. (3.3)]

€ 100% = 0.01%

'~ 10,000

and for the rivetit is

]
= — 100% = 10%
“=10
Thus, although both measurements have an error of 1 cm, the relative error for the rivet is

much greater. We would conclude that we have done an adequate job of measuring the
bridge, whereas our estimate for the rivetleaves something to be desired.
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by Martin |

Error Estimates for lterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, thé exponential function can be computed using
X IE Ij x"
ef=1+x+=++-+= (E3.2.1)
2 3 n!
Thus, as more teims are added in sequence, the approximation becomes a better and better
estimate of the true value of e* Equation (E3.2.1) is called a Maclaurin series expansion.
Starting with the simplest version, e* = 1, add terms one at a time to estimate €.
After each new term is added, compute the true and approximate percent relative errors
with Egs. (3.3) and (3.5), respectively. Note that the true value is %> = 1.648 721 . ... Add

terms until the absolute value of the approximate error estimate &, falls below a prespeci-
fied error criterion &; conforming to three significant figures.

Solution.  First, Eq. (3.7) can be employed to determine the error criterion that ensures a
result is correct to at least three significant figures:

g, = (05 x 100°%)% = 0.05%

Thus, we will add terms to the series until £, falls below this level.
The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term, as in

e =1
or forx=0.5,
e =14+05=15

This represents a true percent relative error of [Eq. (3.3)]

1.648721 — 1.5

£ = [ 648721 100% = 9.02%
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Equation (3.5) can be used to determine an approximate estimate of the error, as in

_15-1

eg = —=—100% = 33.3%

Because &, is not less than the required value of &, we would continue the computation by

* 7 . * * *
adding another term, x° /2!, and repeating the error calculations. The process is continued
until £, < &;. The entire computation can be summarized as

T

PP T et o e ks & ST s i S T IR ST LS A, el VLA SRS L

Terms Result er (Te) Eq (V)
i ] 39.3
2 1.5 Q.02 333
3 1.625 1.44 769
4 1.645833333 0175 1.27
5 1 648437500 0.0172 0.158
6 1 648697917 0.00142 00158
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FUNCTION IterMeth(val, es, maxit)
iter = 1
sol = val
ea = ]100
0o
solold = sol
sol = ...
iter = jter + 1
IF sol # 0 ea=abs((sol — sololdl)/sol)*100
IFea = es OR iter = maxit EXIT

END 0O
IterMeth = sol
END IterMeth

FIGURE 3.3

Pseudocode for a generic iterative calculation.
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Round-off Errors

 Numbers such as r, e, or v7 cannot be expressed
by a fixed number of significant figures.

e Computers use a base-2 representation, they cannot
precisely represent certain exact base-10 numbers.

 Fractional quantities are typically represented In
computer using “floating point” form, e.g.,

Integer part
m beé/ exponent
/ =
mantissa \ Base of the number system
used
by Martin Mendez, Chapter 3 14

UASLP, Mex

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Figure 3.3

10 10 102 10' 109

8 6 4 0O 9

0 < 10 = (0]
4 < 100 = 400
() 6 < 1,000 = 6,000
8 = 10,000 = 80,000
86,409
27 26 2 = 23 22 21 20
| | | I I | I |
1 0o 1 0 1 1 o 1
b e LA L
0 < 2 = )
1 X 4 = 4
1 X 8 = 8
0 < 16 = O
1 X 32 = 32
(H) 0 <X 64 = 0
1 < 128 = 128
173
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Figure 3.4
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Range of Integers

Problem Statement. Determine the range of integers in base-10 that can be represented
on a 16-bit computer.

Solution. Of the 16 bits, the first bit holds the sign. The remaining 15 bits can hold bi-
nary numbers from O to 111111111111111. The upper limit can be converted to a decimal

integer, as in
(Ax2+0x2) 4.+ x2H)+ (1 x29

which equals 32,767 (note that this expression can be simply evaluated as 2'> — 1). Thus,
a 16-bit computer word can store decimal integers ranging from —32,767 to 32,767. In
addition, because zero is already defined as 0000000000000000, it is redundant to use the
number 10000000000M000 to define a “minus zero.” Therefore, it is usually employed to
represent an additional negative number: —32,768, and the range 1s from —32,768 to
32,767.
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Cintiran 2 B
| IU 1T VU.J
igned
exponent
B L

- Mantissa

T
Sign

For instance, the number 156.78 could be represented as 0.15678 x 10° in a floating-
point base-10 system.
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156.78 » 0.15678x10%in a floating
point base-10 system

L 0020411765  Suppose only 4
34 decimal places to be stored
0.0294x10° tl)s m <1

* Normalized to remove the leading zeroes.
Multiply the mantissa by 10 and lower the
exponent by 1

0.2941 x 10

'\ Additional significant figure
by Martin Mendez, |S retalned 19
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<[ <1

Therefore
for a base-10 system 0.1 <m<1
for a base-2 system 0.5 <=m<1

* Floating point representation allows both
fractions and very large numbers to be
expressed on the computer. However,

— Floating point numbers take up more room.
— Take longer to process than integer numbers.

— Round-off errors are introduced because mantissa
holds only a finite number of significant figures.
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Hypothetical Set of Floating-Point Numbers

Problem Statement. Create a hypothetical floating-point number set for a machine
that stores infornation using 7-bit words. Employ the first bit for the sign of the number,
the next three for the sign and the magnitude of the exponent, and the last three for the
magnitude of the mantissa (Fig. 3.8 ).

FIGURE 3.8

The smallest possible positive floaling-point number from Example 3.5.
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Solution. The smallest possible positive number is depicted in Fig. 3.8. The initial O in-
dicates that the quantity is positive. The 1 in the second place designates that the exponent
has a negative sign. The 1’s in the third and fourth places give a maximum value to the

exponent of
Ix2'+1x2°=3

Therefore, the exponent will be —3. Finally, the mantissa is specified by the 100 in the last
three places, which conforms to

I x2'4+0x2%4+0x23=0.5

Although a smaller mantissa is possible (e.g., 000,001,010, 011), the value of 1001s used
because of the imit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible pos-
itive number for this system is +0.5 x 273, which isequal to 0.0625 in the base- 10 system.

The next highest numbers are developed by increasing the mantissa, as in
-+

0111101 = (1 x27'+0x272+1x273) x 273 = (0.078125) 0
0111110 =(1 x27' +1 x27240x273) x 273 = (0.093750)10
Ol =(1 x27'+1x2241x2% x 273 =(0.109379),0

Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.
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At this point, to continue increasing, we must decrease the exponent to 10, which gives
a value of

I x2'+0x20=2

The mantissa s decreased back to its smallest value of 100. Therefore, the next number is
0110100 = (1 x 271 +0 x 272+ 0 x 27°) x 27% = (0.125000) 10

This still represents a gap of 0.125000 — 0.109375 = 0.015625. However, now when

higher numbers are generated by increasing the mantissa, the gapis lengthened to 0.03125,
0110101 = (1 x27'+0x 277 +1 x 277) x27* = (0.156250),9
0110110 =(1 x2""+1x272+0x2"3) x 272 = (0.187500) o
0110111 = (1 x27 "+ 1 x272+1x27%) x 272 = (0.218750) ;0

This pattern is repeated as each larger quantity is formulated until a maximum number is
reached,

00111l =(Ix2 "+ 1x224+1x2Hx22=Do
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The Interval between Numbers, Ax, Increases as the Numbers Grow in Magnitude.

Chopping Rounding

E
D W ————4 Q t + y 1 Overflow —=

There Is a Limited Range of Quantities Thai May Be Represented.

Underflow “hole”

at zero [There Are Only a Finite Number of Quantities That Can Be Represented|
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Chopping

Example:

1=3.14159265358 to be stored on a base-10 system
carrying 7 significant digits.

n=3.141592 chopping error  ¢=0.00000065

If rounded
1=3.141593 £,~0.00000035

e Some machines use chopping, because rounding adds
to the computational overhead. Since number of
significant figures is large enough, resulting chopping
error is negligible.
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