Ecuaciones Algebraicas lineales

- An equation of the form $a x+b y+c=0$ or equivalently $a x+b y=-$ c is called a linear equation in x and y variables.
- $a x+b y+c z=d$ is a linear equation in three variables, x, y, and z.
- Thus, a linear equation in n variables is $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b$
- A solution of such an equation consists of real numbers $\mathrm{c}_{1}, \mathrm{c}_{2}$, c_{3}, \ldots, c_{n}. If you need to work more than one linear equations, a system of linear equations must be solved simultaneously.

In Part Two, we determined the value x that satisfied a single equation, $f(x)=0$. Now, we deal with the case of determining the values $x_{1}, x_{2}, \ldots, x_{n}$ that simultaneously satisfy a set of equations

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{gathered} \longrightarrow \begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{14} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdot
\end{gathered} \quad \cdot \begin{gathered}
\cdot \\
\cdot \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Matrices

$\mathrm{a}_{\mathrm{ij}}=$ elementos de una matriz
i=número del renglón
j=número de la columna
$[B]=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right] \quad[C]=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ \vdots \\ c_{n}\end{array}\right] \quad$ Vector columna
Vector renglón

Número de

 ecuaciones
Número de incóngnitas

Box PT3.1 Special Types of Square Matrices

There are a number of special forms of square matrices that are important and should be noted:
A symmetric matrix is one where $a_{i j}=a_{j i}$ for all i 's and j 's. For example,

$$
[A]=\left[\begin{array}{lll}
5 & 1 & 2 \\
1 & 3 & 7 \\
2 & 7 & 8
\end{array}\right]
$$

is a 3 by 3 symmetric matrix.
A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

Note that where large blocks of elements are zero, they are left blank.
An identity matrix is a diagonal matrix where all elements on the main diagonal are equal to 1 , as in

$$
[I]=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

The symbol $[I]$ is used to denote the identity matrix. The identity matrix has properties similar to unity.

An upper triangular matrix is one where all the elements below the main diagonal are zero, as in

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
& a_{22} & a_{23} & a_{24} \\
& & a_{33} & a_{34} \\
& & & a_{41}
\end{array}\right]
$$

A lower triangular matrix is one where all elements above the main diagonal are zero, as in

$$
[A]=\left[\begin{array}{llll}
a_{11} & & & \\
a_{21} & a_{22} & & \\
a_{31} & a_{32} & a_{33} & \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

A banded matrix has all elements equal to zero, with the exception of a band centered on the main diagonal:

$$
[A]=\left[\begin{array}{cccc}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right]
$$

The above matrix has a bandwidth of 3 and is given a special name-the tridiagonal matrix

Reglas de operaciones con matrices

Addition of two matrices, say, $[A]$ and $[B]$, is accomplished by adding corresponding terms in each matrix. The elements of the resulting matrix $[C]$ are computed,

$$
c_{i j}=a_{i j}+b_{i j}
$$

for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$. Similarly, the subtraction of two matrices, say, $[E]$ minus $[F]$, is obtained by subtracting corresponding terms, as in

$$
d_{i j}=e_{i j}-f_{i j}
$$

for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$. It follows directly from the above definitions that addition and subtraction can be performed only between matrices having the same dimensions.

Both addition and subtraction are commutative:

$$
[A]+[B]=[B]+[A]
$$

Addition and subtraction are also associative, that is,

$$
([A]+[B])+[C]=[A]+([B]+[C])
$$

The multiplication of a matrix [A] by a scalar g is obtained by multiplying every element of $[A]$ by g, as in

$$
[D]=g[A]=\left[\begin{array}{cccc}
g a_{11} & g a_{12} & \cdots & g a_{1 m} \\
g a_{21} & g a_{22} & \cdots & g a_{2 m} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
g a_{n 1} & g a_{n 2} & \cdots & g a_{m n}
\end{array}\right]
$$

The praduct of two matrices is represented as $[C]=[A][B]$, where the elements of $[C]$ are defined as (see Box PT3.2 for a simple way to conceptualize matrix multiplication)

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \tag{PT3.2}
\end{equation*}
$$

where $n=$ the column dimension of $[A]$ and the row dimension of $[B]$. That is, the $c_{i j}$ element is obtained by adding the product of individual elements from the ith row of the first matrix, in this case $[A]$, by the j th column of the second matrix $[B]$.

$$
[A][B] \neq[B][A]
$$

Although multiplication is possible, matrix division is not a defined operation. However, if a matrix $[A]$ is square and nonsingular, there is another matrix $[A]^{-1}$, called the inverse of $[A]$, for which

$$
\begin{equation*}
[A][A]^{-1}=[A]^{-1}[A]=[I] \tag{PT3.3}
\end{equation*}
$$

Two other matrix manipulations that will have utility in our discussion are the transpose and the trace of a matrix. The transpose of a matrix involves transforming its rows into columns and its columns into rows. For example, for the 4×4 matrix,

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

the transpose, designated $[A]^{T}$, is defined as

$$
[A]^{T}=\left[\begin{array}{llll}
a_{11} & a_{21} & a_{31} & a_{41} \\
a_{12} & a_{22} & a_{32} & a_{42} \\
a_{13} & a_{23} & a_{33} & a_{43} \\
a_{14} & a_{24} & a_{34} & a_{44}
\end{array}\right]
$$

In other words, the element $a_{i j}$ of the transpose is equal to the $a_{j i}$ element of the original matrix.

The transpose has a variety of functions in matrix algebra. One simple advantage is that it allows a column vector to be written as a row. For example, if

$$
\{C\}=\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\}
$$

then

$$
\{C\}^{T}=\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right]
$$

The trace of a matrix is the sum of the elements on its principal diagonal. It is designated as $\operatorname{tr}[A]$ and is computed as

$$
\operatorname{tr}[A]=\sum_{i=1}^{n} a_{i i}
$$

The trace will be used in our discussion of eigenvalues in Chap. 27.
The final matrix manipulation that will have utility in our discussion is augmentation. A matrix is augmented by the addition of a column (or columns) to the original matrix. For example, suppose we have a matrix of coefficients:

$$
[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

We might wish to augment this matrix [A] with an identity matrix (recall Box PT3.J) to yield a 3-by-6-dimensional matrix:

$$
[A]=\left[\begin{array}{lll:lll}
a_{11} & a_{12} & a_{13} & 1 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 & 1
\end{array}\right]
$$

Such an expression has utility when we must perform a set of identical operations on two matrices. Thus, we can perform the operations on the single augmented matrix rather than on the two individual matrices.

Representación de ecuaciones algebraicas lineales en forma matricial

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

$$
\begin{gathered}
{[A]^{-1}[A]\{X\}=[A]^{-1}(B)} \\
\{X\}=[A]^{-1}\{B\}
\end{gathered}
$$

Solving for X

Noncomputer Methods for Solving Systems of Equations

- For small number of equations ($\mathrm{n} \leq 3$) linear equations can be solved readily by simple techniques such as "method of elimination."
- Linear algebra provides the tools to solve such systems of linear equations.
- Nowadays, easy access to computers makes the solution of large sets of linear algebraic equations possible and practical.

Gauss Elimination

Chapter 9

Solving Small Numbers of Equations

- There are many ways to solve a system of linear equations:
- Graphical method
- Cramer's rule
- Method of elimination
- Computer methods

Graphical Method

- For two equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

- Solve both equations for x_{2} :

$$
\begin{aligned}
& x_{2}=-\left(\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}} \Rightarrow x_{2}=(\text { slope }) x_{1}+\text { intercept } \\
& x_{2}=-\left(\frac{a_{21}}{a_{22}}\right) x_{1}+\frac{b_{2}}{a_{22}}
\end{aligned}
$$

- Plot x_{2} vs. x_{1} on rectilinear paper, the intersection of the lines present the solution.

Fig. 9.1

Graphical Method

- Or equate and solve for x_{1}

$$
\begin{aligned}
& x_{2}=-\left(\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}}=-\left(\frac{a_{21}}{a_{22}}\right) x_{1}+\frac{b_{2}}{a_{22}} \\
& \Rightarrow\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}}-\frac{b_{2}}{a_{22}}=0 \\
& \Rightarrow x_{1}=-\frac{\left(\frac{b_{1}}{a_{12}}-\frac{b_{2}}{a_{22}}\right)}{\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right)}=\frac{\left(\frac{b_{2}}{a_{22}}-\frac{b_{1}}{a_{12}}\right)}{\left(\frac{a_{21}}{a_{22}}-\frac{a_{11}}{a_{12}}\right)}
\end{aligned}
$$

Figure 9.2

Determinants and Cramer's Rule

- Determinant can be illustrated for a set of three equations:

$$
A x=b
$$

- Where A is the coefficient matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- Assuming all matrices are square matrices, there is a number associated with each square matrix A called the determinant, D, of A. ($D=\operatorname{det}(A))$. If [A] is order 1 , then [A] has one element:

$$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{11}\right] \\
& \mathrm{D}=\mathrm{a}_{11}
\end{aligned}
$$

- For a square matrix of order $2, \mathrm{~A}=$
the determinant is $D=a_{11} a_{22}-a_{21} a_{12}$

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

- For a square matrix of order 3 , the minor of an element a_{ij} is the determinant of the matrix of order 2 by deleting row i and column j of A.

$$
\begin{aligned}
& D=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& D_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|=a_{22} a_{33}-a_{32} a_{23} \\
& D_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|=a_{21} a_{33}-a_{31} a_{23} \\
& D_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|=a_{21} a_{32}-a_{31} a_{22}
\end{aligned}
$$

$$
D=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

- Cramer's rule expresses the solution of a systems of linear equations in terms of ratios of determinants of the array of coefficients of the equations. For example, x_{1} would be computed as:

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{D}
$$

Determinants
Problem Statement. Compute values for the determinants of the systems represented in Figs. 9.1 and 9.2.
Solution. For Fig. 9.1:

$$
D=\left|\begin{array}{rr}
3 & 2 \\
-1 & 2
\end{array}\right|=3(2)-2(-1)=8
$$

For Fig. 9.2a:

$$
D=\left|\begin{array}{ll}
-1 / 2 & 1 \\
-1 / 2 & 1
\end{array}\right|=\frac{-1}{2}(1)-1\left(\frac{-1}{2}\right)=0
$$

For Fig. 9.2b:

$$
D=\left|\begin{array}{cc}
-1 / 2 & 1 \\
-1 & 2
\end{array}\right|=\frac{-1}{2}(2)-1(-1)=0
$$

For Fig. 9.2c:

$$
D=\left|\begin{array}{cc}
-1 / 2 & 1 \\
-2.3 / 5 & 1
\end{array}\right|=\frac{-1}{2}(1)-1\left(\frac{-2.3}{5}\right)=-0,04
$$

Cramer's Rule
Problem Statement. Use Cramer's rule to solve

$$
\begin{aligned}
& 0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01 \\
& 0.5 x_{1}+x_{2}+1.9 x_{3}=0.67 \\
& 0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44
\end{aligned}
$$

Solution. The determinant D can be written as [Eq. (9.2

$$
D=\left|\begin{array}{ccc}
0.3 & 0.52 & 1 \\
0.5 & 1 & 1.9 \\
0.1 & 0.3 & 0.5
\end{array}\right|
$$

The minors are [Eq. (9.3)]

$$
\begin{aligned}
& A_{1}=\left|\begin{array}{cc}
1 & 1.9 \\
0.3 & 0.5
\end{array}\right|=1(0.5)-1.9(0.3)=-0.07 \\
& A_{2}=\left|\begin{array}{ll}
0.5 & 1.9 \\
0.1 & 0.5
\end{array}\right|=0.5(0.5)-1.9(0.1)=0.06
\end{aligned}
$$

$$
A_{3}=\left|\begin{array}{cc}
0.5 & 1 \\
0.1 & 0.3
\end{array}\right|=0.5(0.3)^{\prime}-1(0.1)=0.05
$$

These can be used to evaluate the determinant, as in [Eq. (9.4)]

$$
D=0.3(-0.07)-0.52(0.06)+1(0.05)=-0.0022
$$

Applying Eq. (9.5), the solution is

$$
\begin{aligned}
& x_{1}=\frac{\left|\begin{array}{rcc}
-0.01 & 0.52 & 1 \\
0.67 & 1 & 1.9 \\
-0.44 & 0.3 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.03278}{-0.0022}=-14.9 \\
& x_{2}=\frac{\left|\begin{array}{ccc}
0.3 & -0.01 & 1 \\
0.5 & 0.67 & 1.9 \\
0.1 & -0.44 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.0649}{-0.0022}=-29.5 \\
& x_{3}=\frac{\left|\begin{array}{ccc}
0.3 & 0.52 & -0.01 \\
0.5 & 1 & 0.67 \\
0.1 & 0.3 & -0.44
\end{array}\right|}{-0.0022}=\frac{-0.04356}{-0.0022}=19.8
\end{aligned}
$$

Method of Elimination

- The basic strategy is to successively solve one of the equations of the set for one of the unknowns and to eliminate that variable from the remaining equations by substitution.
- The elimination of unknowns can be extended to systems with more than two or three equations; however, the method becomes extremely tedious to solve by hand.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \quad \longrightarrow x_{1}=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}} \\
& a_{11} a_{21} x_{1}+a_{12} a_{21} x_{2}=b_{1} a_{21} \\
& a_{21} a_{11} x_{1}+a_{22} a_{11} x_{2}=b_{2} a_{11} \\
& a_{22} a_{11} x_{2}-a_{12} a_{21} x_{2}=b_{2} a_{11}-b_{1} a_{21} \\
& x_{2}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}} \\
& \text { Relación con Cramer }
\end{aligned}
$$

Naive Gauss Elimination

- Extension of method of elimination to large sets of equations by developing a systematic scheme or algorithm to eliminate unknowns and to back substitute.
- As in the case of the solution of two equations, the technique for n equations consists of two phases:
- Forward elimination of unknowns
- Back substitution

Fig. 9.3

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
{\left[\begin{array}{lll:l}
a_{11} & a_{12} & a_{13} & c_{1} \\
a_{21} & a_{22} & a_{23} & c_{2} \\
a_{31} & a_{32} & a_{33} & c_{3}
\end{array}\right]} \\
\Downarrow \downarrow
\end{array}\right] \begin{array}{llll}
a_{11} & a_{12} & a_{13} & c_{1} \\
& a_{22}^{\prime} & a_{23}^{\prime} & c_{2}^{\prime} \\
& & a_{33}^{\prime \prime} & c_{3}^{\prime \prime}
\end{array}\right] \quad \begin{array}{c}
\text { Forward } \\
\\
\\
\Downarrow
\end{array} \\
& \left.\begin{array}{c}
x_{3}=c_{3}^{\prime \prime} / a_{33}^{\prime \prime} \\
x_{2}=\left(c_{2}^{\prime}-a_{23}^{\prime} x_{3}\right) / a_{22}^{\prime} \\
x_{1}=\left(c_{1}-a_{12} x_{2}-a_{13} x_{3}\right) / a_{11}
\end{array}\right] \begin{array}{c}
\text { Back } \\
\text { substitution }
\end{array} \\
& \left.\begin{array}{c}
x_{3}=c_{3}^{\prime \prime} / a_{33}^{\prime \prime} \\
x_{2}=\left(c_{2}^{\prime}-a_{23}^{\prime} x_{3}\right) / a_{22}^{\prime} \\
x_{1}=\left(c_{1}-a_{12} x_{2}-a_{13} x_{3}\right) / a_{11}
\end{array}\right] \begin{array}{c}
\text { Back } \\
\text { substitution }
\end{array} \\
& \left.\begin{array}{c}
x_{3}=c_{3}^{\prime \prime} / a_{33}^{\prime \prime} \\
x_{2}=\left(c_{2}^{\prime}-a_{23}^{\prime} x_{3}\right) / a_{22}^{\prime} \\
x_{1}=\left(c_{1}-a_{12} x_{2}-a_{13} x_{3}\right) / a_{11}
\end{array}\right] \begin{array}{c}
\text { Back } \\
\text { substitution }
\end{array}
\end{aligned}
$$

Generalizando

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdot \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\cdots+a_{m n} x_{n}=b_{n}
\end{gathered}
$$

Elemento pivote \leftarrow

Multiplicando ec 1
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1}$
$a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime}$
$a_{32}^{\prime} x_{2}+a_{33}^{\prime} x_{3}+\cdots+a_{3 n}^{\prime} x_{n}=b_{3}^{\prime}$
-

$$
a_{n 2}^{\prime} \cdot x_{2}+a_{n 3}^{\prime} x_{3}+\cdots+a_{u n}^{\prime} x_{n}=b_{n}^{\prime}
$$

$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1}$

$$
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime}
$$

$$
a_{33}^{\prime \prime} x_{3}+\cdots+a_{3 n}^{\prime \prime} x_{n}=b_{3}^{\prime \prime}
$$

$$
a_{n n}^{(n-1)} x_{n}=b_{n}^{(n-1)}
$$

Back Substitution. Equation (9.15d) can now be solved for x_{n} :

$$
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}}
$$

$$
x_{i}=\frac{b_{i}^{(i-1)}-\sum_{j=i+1}^{n} a_{i j}^{(i-1)} x_{j}}{a_{i i}^{(i-1)}}
$$

for $i=n-1 . n-2, \ldots .1$

DOFOR $k=1, n-1$
DOFOR $i=k+1, n$
factor $=a_{i, k} / a_{k, k}$ DOFOR $j=k+1$ to n
$a_{i, j}=a_{i, j}-$ factor $\cdot a_{k, j}$ END DO
$b_{i}=b_{i}-$ factor $\cdot b_{k}$
END DO
ENO DO
$x_{n}=b_{n} / a_{n, n}$
DOFOR $i=n-1,1,-1$
sum $=b_{i}$
OOFOR $j=i+1, n$
sum $=\operatorname{sum}-a_{i, j} \cdot x_{j}$
END DO .
$x_{i}=b_{i} / a_{i, i}$
END DO

Problem Statement. Use Gauss elimination to solve

$$
\begin{align*}
& 3 x_{1}-0.1 x_{2}-0.2 x_{3}=7.85 \\
& 0.1 x_{1}+7 x_{2}-0.3 x_{3}=-19.3 \\
& 0.3 x_{1}-0.2 x_{2}+10 x_{3}=71.4
\end{align*}
$$

Carry six significant figures during the computation.
Solution. The first part of the procedure is forward elimination. Multiply Eq. (E9.5.1) by (0.1)/3 and subtract the result from Eq. (E9.5.2) to give

$$
7.00333 x_{2}-0.293333 x_{3}=-19.5617
$$

Then multiply Eq. (E9.5.1) by (0.3)/3 and subtract it from Eq. (E9.5.3) to eliminate x_{1}. After these operations, the set of equations is

$$
\begin{align*}
3 x_{1} & -0.1 x_{2}-0.2 x_{3}
\end{align*}=7.85 \text { (E9.5.4) }
$$

To complete the forward elimination, x_{2} must be removed from Eq. (E9.5.6). To accomplish this, multiply Eq. (E9.5.5) by $-0.190000 / 7.00333$ and subtract the result from Eq. (E9.5.6). This eliminates x_{2} from the third equation and reduces the system to an upper triangular form, as in

$$
\begin{array}{ccl}
3 x_{1} & -0.1 x_{2} & -0.2 x_{3}
\end{array}=7.85 \text { (E9.5.7) }
$$

We can now solve these equations by back substitution. First, Eq. (E9.5.9) can be solved for

$$
\begin{equation*}
x_{3}=\frac{70.0843}{10.0120}=7.0000 \tag{E9.5.10}
\end{equation*}
$$

This result can be back-substituted into Eq. (E9.5.8):

$$
7.00333 x_{2}-0.293333(7.0000)=-19.5617
$$

which can be solved for

$$
\begin{equation*}
x_{2}=\frac{-19.5617+0.293333(7.0000)}{7.00333}=-2.50000 \tag{E9.5.11}
\end{equation*}
$$

Finally, Eqs. (E9.5.10) and (E9.5.11) can be substituted into Eq. (E9.5.4):

$$
3 x_{1}-0.1(-2.50000)-0.2(7.0000)=7.85
$$

which can be solved for

$$
x_{1}=\frac{7.85+0.1(-2.50000)+0.2(7.0000)}{3}=3.00000
$$

The results are identical to the exact solution of $x_{1}=3, x_{2}=-2.5$, and $x_{3}=7$. This can be verified by substituting the results into the original equation set

$$
\begin{aligned}
& 3(3)-0.1(-2.5)-0.2(7)=7.85 \\
& 0.1(3)+7(-2.5)-0.3(7)=-19.3 \\
& 0.3(3)-0.2(-2.5)+10(7)=71.4
\end{aligned}
$$

Pitfalls of Elimination Methods

- Division by zero. It is possible that during both elimination and back-substitution phases a division by zero can occur.
- Round-off errors.
- Ill-conditioned systems. Systems where small changes in coefficients result in large changes in the solution. Alternatively, it happens when two or more equations are nearly identical, resulting a wide ranges of answers to approximately satisfy the equations. Since round off errors can induce small changes in the coefficients, these changes can lead to large solution errors.
- Singular systems. When two equations are identical, we would loose one degree of freedom and be dealing with the impossible case of $n-1$ equations for n unknowns. For large sets of equations, it may not be obvious however. The fact that the determinant of a singular system is zero can be used and tested by computer algorithm after the elimination stage. If a zero diagonal element is created, calculation is terminated.

Techniques for Improving Solutions

- Use of more significant figures.
- Pivoting. If a pivot element is zero, normalization step leads to division by zero. The same problem may arise, when the pivot element is close to zero. Problem can be avoided:
- Partial pivoting. Switching the rows so that the largest element is the pivot element.
- Complete pivoting. Searching for the largest element in all rows and columns then switching.

III-Conditioned Systems

Problem Statement. Solve the following system:

$$
\begin{align*}
& x_{1}+2 x_{2}=10 \tag{E9.6.1}\\
& 1.1 x_{1}+2 x_{2}=10.4
\end{align*}
$$

Then, solve it again, but with the coefficient of x_{1} in the second equation modified slightly to 1.05 .

Solution.

$$
\begin{aligned}
& x_{1}=\frac{2(10)-2(10.4)}{1(2)-2(1.1)}=4 \\
& x_{2}=\frac{1(10.4)-1.1(10)}{1(2)-2(1.1)}=3
\end{aligned}
$$

Cramer o sustituciòn

Notice that the primary reason for the discrepancy between the two results is that the denominator represents the difference of two almost-equal numbers. As illustrated previously in Sec. 3.4.2, such differences are highly sensitive to slight variations in the numbers being manipulated.

At this point, you might suggest that substitution of the results into the original equations would alert you to the problem. Unfortunately, for ill-conditioned systems this is often not the case. Substitution of the erroneous values of $x_{1}=8$ and $x_{2}=1$ into Eqs. (E9.6.1) and (E9.6.2) yields

$$
\begin{aligned}
& 8+2(1)=10=10 \\
& 1.1(8)+2(1)=10.8 \cong 10.4
\end{aligned}
$$

Therefore, although $x_{1}=8$ and $x_{2}=1$ is not the true solution to the original problem, the error check is close enough to possibly mislead you into believing that your solutions are adequate.

Effect of Scale on the Delerminani

Probiem Siaiemeni. Evaluate the determinant of the following systems:
(a) From Erample 9.1:

$$
\begin{align*}
& 3 x_{1}+2 x_{2}=18 \tag{E9.7.1}\\
& -x_{1}+2 x_{2}=2 \tag{E9.7.2}
\end{align*}
$$

(b) From Example 9.6:

$$
\begin{equation*}
x_{1}+2 x_{2}=10 \tag{E9.7.3}
\end{equation*}
$$

$$
\begin{equation*}
1.1 x_{1}+2 x_{2}=10.4 \tag{E9.7.4}
\end{equation*}
$$

(c) Repcat (b) but with the equations maltiplied by 10.

Solvion.
(a) The determinant of Eģs. (E9.7.1) and (E9.7.2), which are well-conditioned, is

```
D = 3 ( 2 ) - 2 ( - 1 ) = 8
```

(b) The determinant of Ecss (E9.7.3) and (E0.7.4), which are ill-conditioned, is $D=1(2)-2(1.1)=-0.2$
(c) The results of (a) and (b) seem to bear out the coniention that ill-conditioned systems have near-zero determinants. However, suppose that the ill-conditioned system in (b) is multiplied by 10 to give

$$
\begin{aligned}
& 10 x_{1}+20 x_{2}=100 \\
& 11 x_{1}+20 x_{2}=104
\end{aligned}
$$

The multiplication of an equation by a constant has no effect on its solution. In addition, it is still ili-conditioned. This can be verified by the fact that multiplying by a
constant has no effect on the graphical solution. However, the determinant is dramatically affected:

```
D=10(20)-20(11)=-20
```

Not only has it been raised two orders of magnitude, but it is now over twice as large as the determinant of the well-conditioned system in (a).

Problem Sutement. Scale the systems of equations in Example 9.7 to a maximum value of 1 and recompute their determinants.

Solution.
(a) For the well-conditioned system, scaling results in

$$
\begin{aligned}
x_{1}+0.667 x_{2} & =6 \\
-0.5 x_{1}+\quad x_{2} & =1
\end{aligned}
$$

for which the determinant is

```
D=1(1)-0.667(-0.5)=1.333
```

(b) For the ill-conditioned system, scaling gives
$0.5 x_{1}+x_{2}=5$
$0.55 x_{1}+x_{2}=5.2$
for which the determinant is

```
D=0.5(1)-1(0.55)=-0.05
```

(c) For the last case, scaling changes the system to thie same form as in (b) and the determinant is also -0.05 . Thus, the scale effect is removed.

Determinant Evaluation Using Gauss Elimination

The method is based on the fact that the determinant of a triangular matrix can be simply computed as the product of its diagonal elements:

$$
\begin{equation*}
D=a_{11} a_{22} a_{33} \cdots a_{n n} \tag{B9.1.1}
\end{equation*}
$$

The validity of this formulation can be illustrated for a 3 by 3 system:

$$
D=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right|
$$

where the determinant can be evaluated as [recall Eq. (9.4)]

$$
D=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
0 & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
0 & a_{23} \\
0 & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{cc}
0 & a_{22} \\
0 & 0
\end{array}\right|
$$

or, by evaluating the minors (that is, the 2 by 2 determinants),

$$
D=a_{11} a_{22} a_{33}-a_{12}(0)+a_{13}(0)=a_{11} a_{22} a_{33}
$$

Recall that the forward-elimination step of Gauss elimination results in an upper triangular system. Because the value of the determinant is not changed by the forward-elimination process, the determinant can be simply evaluated at the end of this step via

$$
\begin{equation*}
D=a_{11} a_{22}^{\prime} a_{33}^{\prime \prime} \cdots a_{n n}^{(n-1)} \tag{B9.1.2}
\end{equation*}
$$

There is a slight modification to the above approach when the program employs partial pivoting (Sec. 9.4.2). For this case, the determinant changes sign every time a row is pivoted. One way to represent this is to modify Eq. (B9.1.2):

$$
\begin{equation*}
D=a_{11} a_{22}^{\prime}\left(a_{13}^{\prime \prime} \cdots a_{n i}^{(n-1)}(-1)^{\prime \prime}\right. \tag{B9.1.3}
\end{equation*}
$$

where p represents the number of times that rows are pivoted.

Portial Pivoling

Problem Statement. Use Gauss elimination to solve

$$
\begin{aligned}
& 0.0003 x_{1}+3.0000 x_{2}=2.0001 \\
& 1.0000 x_{1}+1.0000 x_{2}=1.0000
\end{aligned}
$$

Note that in this form the first pivot element, $a_{11}=0.0003$, is very close to zero. Then repeat the computation, but partial pivot by reversing the order of the equations. The exact solution is $x_{1}=1 / 3$ and $x_{2}=2 / 3$.
Solution. Multiplying the first equation by $1 /(0.0003)$ yields

$$
x_{1}+10,000 x_{2}=6667
$$

which can be used to eliminate x_{1} from the second equation:

$$
-9999 x_{2}=-6666
$$

which can be solved for

$$
x_{2}=\frac{2}{3}
$$

This resslt can be substituted back into the first equation to evaluate x_{1} :

$$
x_{1}=\frac{2.0001-3(2 / 3)}{0.0003}
$$

Casi cero !!!

Note how the solution for x_{1} is highly dependent on the number of significant figures. This is because in Eq. (E9.9.1), we are subtracting two almost-equal numbers. On the other hand, if the equations are solved in reverse order, the row with the larger pivot element is normalized. The equations are

$$
\begin{aligned}
& 1.0000 x_{1}+1.0000 x_{2}=1.0000 \\
& 0.0003 x_{1}+3.0000 x_{2}=2.0001
\end{aligned}
$$

Elimination and substitution yield $x_{2}=2 / 3$. For different numbers of significant figures, x_{1} can be computed from the first equation, as in

$$
\begin{equation*}
x_{\gamma}=\frac{1-(2 / 3)}{1} \tag{E9.9.2}
\end{equation*}
$$

```
p=k
big = |\mp@subsup{\partial}{k.k}{}|
DOFOR ij = k+1,n
        dummy = |aji,k
        IF (dummy > big)
        big = dummy
        p=ii
        ENO IF
END DO
IF (p\not=k)
        DOFOR jj = k, n
            dummy = a dp.jj
            \mp@subsup{a}{p,jj}{}=\mp@subsup{a}{k,jj}{}
            a}\mp@subsup{a}{k,jj}{}=\mathrm{ dummy
        END DO
        dummy = bp
        b}=\mp@subsup{b}{k}{
        b}=\mathrm{ = dummy
END IF
```


FIGURE 9.5

Pseudocode to implement porfial pivoling.

SCALING

Effect of Scaling on Pivoting and Round-Off
Problem Statement.
(a) Solve the following set of equations using Gauss elimination and a pivoting strategy:

$$
\begin{aligned}
2 x_{1}+100,000 x_{2} & =100,000 \\
x_{1}+\quad x_{2} & =2
\end{aligned}
$$

(b) Repeat the solution after scaling the equations so that the maximum coefficient in each row is 1 .
(c) Finally, use the scaled coefficients to determine whether pivoting is necessary. However, actually solve the equations with the original coefficient values. For all cases, retain only three significant figures. Note that the correct answers are $x_{1}=$ 1.00002 and $x_{2}=0.99998$ or, for three significant figures, $x_{1}=x_{2}=1.00$.

Solution.
(a) Without scaling, forward elimination is applied to give

$$
\begin{aligned}
2 x_{1}+100,000 x_{2} & =100,000 \\
-50,000 x_{2} & =-50,000
\end{aligned}
$$

which can be solved by back substitution for
$x_{2}=1.00$
$x_{1}=0,00$
Although x_{2} is correct, x_{1} is 100 percent in error because of round-off.
(b) Scaling transforms the original equations to

$$
\begin{array}{r}
0.00002 x_{1}+x_{2}=1 \\
x_{1}+x_{2}=2
\end{array}
$$

Therefore, the rows should be pivoted to put the greatest value on the diagonal.

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
0.00002 x_{1}+x_{2} & =1
\end{aligned}
$$

Forward elimination yields

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
x_{2} & =1.00
\end{aligned}
$$

which can be solved for

$$
x_{1}=x_{2}=1
$$

Thus, scaling leads to the correct answer.
(c) The scaled coefficients indicate that pivoting is necessary. We therefore pivot but retain the original coefficients to give

$$
x_{1}+\quad x_{2}=2
$$

$2 x_{1}+100,000 x_{2}=100,000$
Forward elimination yields

$$
\begin{aligned}
x_{1}+\quad x_{2} & =2 \\
100,000 x_{2} & =100,000
\end{aligned}
$$

which can be solved for the correct answer: $x_{1}=x_{2}=1$. Thus, scaling was useful in determining whether pivoting was necessary, but the equations themselves did not require scaling to arrive at a correct result.

```
SUB Gauss (a, b, n, x, tol, er)
UB Gauss (a,b.
    er=0
    OOFOR i=1,n
    5i=ABS(a (a, )
        OOFOR j = 2, n
            IF ABS(a,j)>5; THEN }\mp@subsup{s}{i}{}=\mathrm{ = ABS(al,j)
        EMD 00
    END DO
CALL Eliminate(a, s, n, b, tol, er)
    IF er * - -1 THEN
        CALL Substitute(a, n, b, x)
    END IF
    END Gauss
SUB Eliminate (a, s, n, b, tol, er)
    DOFOR k=1,n-1
    CALL Pivot (a, b, s, n, k)
        IF ABS (ak,k/Sk})<\mathrm{ tol THEN
            er = -1
        EXIT DO
        END IF
        DOFOR i=k+1.n
            factor = a a,k/a
            OOFOR j = k + 1,n
            a,j = al.j - factor*}\mp@subsup{a}{k.j}{l
        END DO
        bi}=\mp@subsup{b}{i}{}-\mathrm{ factor * b}\mp@subsup{b}{k}{
        ENO OO
    ENO DO
    IF ABS}(\mp@subsup{a}{k,1}{,}/\mp@subsup{s}{k}{})<\mathrm{ tol THEN er = -1
    END Eliminate
SUB Eliminate ( \(a, s, n, b\), tol, er)
```

```
)
```

SUB Pivot (a, b, s, n, k)
$p=k$
big $=$ ABS $\left(a_{k, k} / s_{k}\right)$
DOFOR $i i=k+1, n$
dummy $=A B S\left(a_{1, k}, / S_{1 i}\right)$
IF dummy > big THEN
$b i g=$ dummy
$p=i i$
END IF
END 00
IF $p \neq k$ THEN
DOFOR $j j=k, n$
dummy $=d_{\rho . j j}$
$a_{p . j j}=a_{k . j}$
$a_{k, j j}=$ dummy
ENO DO
dummy $=b_{p}$
$b_{p}=b_{k}$
$b_{k}=$ dummy
$b_{k}=$ dummy
dummy $=s_{p}$
$s_{p}=s_{k}$
$s_{k}=$ dummy
END IF
ENO pivot
SUB Substitute (a, $n, b, x)$
$x_{n}=b_{1} / a_{n, n}$
DOFOR $i=n-1,1,-1$
sum = 0
SUm $=0$
DOFOR $j=i+1 . n$
sum $=\operatorname{sum}+a_{i, j}+x_{j}$
ENO DO
$x_{1}=\left(b_{1}-\right.$ sum $) / \partial_{1,1}$
ENO DO
ENO Substitute

Gauss-Jordan

- It is a variation of Gauss elimination. The major differences are:
- When an unknown is eliminated, it is eliminated from all other equations rather than just the subsequent ones.
- All rows are normalized by dividing them by their pivot elements.
- Elimination step results in an identity matrix.
- Consequently, it is not necessary to employ back substitution to obtain solution.

Problem Statement. Use the Gauss-Jordan technique to solve the same system as in Example 9.5:

$$
\begin{aligned}
& 3 x_{1}-0.1 x_{2}-0.2 x_{3}=7.85 \\
& 0.1 x_{1}+7 x_{2}-0.3 x_{3}=-19.3 \\
& 0.3 x_{1}-0.2 x_{2}+10 x_{3}=71.4
\end{aligned}
$$

Solution. First, express the coefficients and the right-hand side as an augmented matrix:
$\left[\begin{array}{cccr}3 & -0.1 & -0.2 & 7.85 \\ 0.1 & 7 & -0.3 & -19.3 \\ 0.3 & -0.2 & 10 & 71.4\end{array}\right]$

Then normalize the first row by dividing it by the pivot element, 3 , to yield
$\left[\begin{array}{cccc}1 & -0.0333333 & -0.066667 & 2.61667 \\ 0.1 & 7 & -0.3 & -19.3 \\ 0.3 & -0.2 & 10 & 71.4\end{array}\right]$

The x_{1} term can be eliminated from the second row by subtracting 0.1 times the first row from the second row. Similarly, subtracting 0.3 times the first row from the third row will eliminate the x_{1} term from the third row:

$$
\left[\begin{array}{cccr}
1 & -0.0333333 & -0.066667 & 2.61667 \\
0 & 7.00333 & -0.293333 & -19.5617 \\
0 & -0.190000 & 10.0200 & 70.6150
\end{array}\right]
$$

Next, normalize the second row by dividing it by 7.00333:
$\left[\begin{array}{cccc}1 & -0.0333333 & -0.066667 & 2.61667 \\ 0 & 1 & -0.0418848 & -2.79320 \\ 0 & -0.190000 & 10.0200 & 70.6150\end{array}\right]$

Reduction of the x_{2} terms from the first and third equations gives
$\left[\begin{array}{rrrr}1 & 0 & -0.0680629 & 2.52356 \\ 0 & 1 & -0.0418848 & -2.79320 \\ 0 & 0 & 10.01200 & 70.0843\end{array}\right]$

The third row is then normalized by dividing it by 10.0120 :
$\left[\begin{array}{cccr}1 & 0 & -0.0680629 & 2.52356 \\ 0 & 1 & -0.0418848 & -2.79320 \\ 0 & 0 & 1 & 7.0000\end{array}\right]$

Finally, the x, terms cin be reduced from the first and the second equations to give

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -3.0000 \\
0 & 1 & 0 & -2.5000 \\
0 & 0 & 1 & 7 . .0000
\end{array}\right.
$$

Thus, as depicted in f g . 9.8: the coefficient matrix has been transformed to the identit matrix, and the solutigh is obtained in the right-hand-side vector. Notice that no back sub stitution was require to obtain the solution.
9.1
(a) Write the following set of equations in matrix form:

$$
\begin{aligned}
& 50=5 x_{3}+2 x_{2} \\
& 10-x_{1}=x_{3} \\
& 3 x_{2}+8 x_{1}=20
\end{aligned}
$$

(b) Wrive the transpose of the matrix of coefficients.
9.2 A number of matrices are defined as
$[A]=\left[\begin{array}{ll}4 & 7 \\ 1 & 2 \\ 5 & 6\end{array}\right]$
$[B]=\left[\begin{array}{lll}4 & 3 & 7 \\ 1 & 2 & 7 \\ 2 & 0 & 4\end{array}\right]$
$|C\rangle=\left\{\begin{array}{l}3 \\ 6 \\ 1\end{array}\right\}$
$[D]=\left[\begin{array}{cccc}9 & 4 & 3 & -6 \\ 2 & -1 & 7 & 5\end{array}\right]$
(5) $[E] \times[B]$
(9) $[A] \times\{C \mid$
(6) $\{C\}^{T}$
(10) $[I] \times[B]$
(7) $[B] \times[A]$
(11) $[E]^{T}[E]$
(8) $[D]^{T}$
(12) $\{C]^{T}\{C]$
9.3 Three matrices are defined as
$[A]=\left[\begin{array}{cc}1 & 6 \\ 3 & 10 \\ 7 & 4\end{array}\right]$
$[B]=\left[\begin{array}{cc}1 & 3 \\ 0.5 & 2\end{array}\right]$
$[C]=\left[\begin{array}{cc}2 & -2 \\ -3 & 1\end{array}\right]$
(a) Perform all possible multiplications that can be computed between pairs of these matrices.
(b) Use the method in Box PT3.2 to justify why the remaining pairs cannot be multiplied.
(c) Use the results of (a) to illustrate why the order of multiplication is important.
9.4 Use the graphical method to solve

$$
\begin{aligned}
& 4 x_{1}-8 x_{2}=-24 \\
& x_{1}+6 x_{2}=34
\end{aligned}
$$

$$
\begin{aligned}
& {[E]=\left[\begin{array}{lll}
1 & 5 & 8 \\
7 & 2 & 3 \\
4 & 0 & 6
\end{array}\right]} \\
& {[F]=\left[\begin{array}{lll}
3 & 0 & 1 \\
1 & 7 & 3
\end{array}\right] \quad\lfloor G\rfloor=\left\lfloor\begin{array}{lll}
7 & 6 & 4 \\
\hline
\end{array}\right.}
\end{aligned}
$$

Answer the following questions regarding these matrices:
(a) What are the dimensions of the matrices?
(b) Identify the square, column, and row matrices.
c) What are the values of the elements: $a_{12}, b_{23}, d_{32}, e_{22}, f_{12}, g_{12}$?
(d) Perform the following operations:
(1) $[E]+[B]$
(3) $[B]-[E]$
(2) $[A]+[F]$
(4) $7 \times[B]$
9.8 Given the equations

$$
\begin{aligned}
& 10 x_{1}+2 x_{2}-x_{3}=27 \\
& -3 x_{1}-6 x_{2}+2 x_{3}=-61.5 \\
& x_{1}+x_{2}+5 x_{3}=-21.5
\end{aligned}
$$

(a) Solve by naive Gauss elimination. Show all steps of the computation.
(b) Substitute your results into the original equations to check your answers.
9.9 Use Gauss elimination to solve:

$$
\begin{aligned}
& 8 x_{1}+2 x_{2}-2 x_{3}=-2 \\
& 10 x_{1}+2 x_{2}+4 x_{3}=4 \\
& 12 x_{1}+2 x_{2}+2 x_{3}=6
\end{aligned}
$$

Employ partial pivoting and check your answers by substituting them into the original equations.
9.10 Given the system of equations

$$
-3 x_{2}+7 x_{3}=2
$$

Check your results by substituting them back into the equations.
9.5 Given the system of equations

$$
\begin{aligned}
& -1.1 x_{1}+10 x_{2}=120 \\
& -2 x_{1}+17.4 x_{2}=174
\end{aligned}
$$

(a) Solve graphically and check your results by substituting them back into the equations.
(b) On the basis of the graphical solution, what do you expect regarding the condition of the system?
(c) Compute the determinant.
(d) Solve by the elimination of unknowns.
9.6 For the set of equations

$$
\begin{aligned}
& 2 x_{2}+5 x_{3}=9 \\
& 2 x_{1}+x_{2}+x_{3}=9 \\
& 3 x_{1}+x_{2}=10
\end{aligned}
$$

(a) Compute the determinant.
(b) Use Cramer's rule to solve for the x 's.
(c) Substitute your results back into the original equation to check your results.
9.7. Given the equations

$$
\begin{aligned}
& 0.5 x_{1}-x_{2}=-9.5 \\
& 1.02 r_{1}-2 x_{2}=-18.8
\end{aligned}
$$

(a) Solve graphically.
(b) Compute the determinant.
(c) On the basis of (a) and (b), what would you expect regarding the system's condition?
(d) Solve by the elimination of unknowns.
(e) Solve again, but with a_{11} modified slightly to 0.52 . Interpret your results.

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=3 \\
& 5 x_{1}-2 x_{2}=2
\end{aligned}
$$

(a) Compute the determinant.
(b) Use Cramer's rule to solve for the x 's.
(c) Use Gauss elimination with partial pivoting to solve for the x 's.
(d) Substitute your results back into the original equations to check your solution.
9.11 Given the equations

$$
\begin{aligned}
& 2 x_{1}-6 x_{2}-x_{3}=-38 \\
& -3 x_{1}-x_{2}+7 x_{3}=-34 \\
& -8 x_{1}+x_{2}-2 x_{3}=-20
\end{aligned}
$$

(a) Solve by Gauss elimination with partial pivoting. Show all steps of the computation.
(b) Substitute your results into the original equations to check your answers.
9.12 Use Gauss-Jordan elimination to solve:

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}=1 \\
& 5 x_{1}+2 x_{2}+2 x_{3}=-4 \\
& 3 x_{1}+x_{2}+x_{3}=5
\end{aligned}
$$

Do not employ pivoting. Check your answers by substituting them into the original equations.

9.13 Solve:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=-3 \\
& 6 x_{1}+2 x_{2}+2 x_{3}=2 \\
& -3 x_{1}+4 x_{2}+x_{3}=1
\end{aligned}
$$

Descomposición LU e inversión de Matrices
 $$
[L]\{D]=\{B\}
$$

 $$
[\mathrm{A}]\{\mathrm{X}\}-\{\mathrm{B}\}=0
$$

1. $L U$ decomposition step. $[A]$ is factored or "decomposed" into lower $[L]$ and upper $[U]$ triangular matrices.
2. Substitution step. $[L]$ and $[U]$ are used to determine a solution $\{X]$ for a right-hand side $|B|$. This step itself consists of two steps. First, Eq. (10.8) is used to generate an intermediate vector $\{D \mid$ by forward substitution. Then, the result is substituted into Eq. (10.4), which can be solved by back substitution for $[X]$.

De la eliminación hacia delante de Gauss

tenemos:

$$
[U]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime 3}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}
$$

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.13)]

$$
f_{21}=\frac{a_{21}}{a_{11}}
$$

and subtract the result from the second row to eliminate a_{21}. Similarly, row 1 is multiplied by

$$
f_{31}=\frac{a_{31}}{a_{11}}
$$

and the result subtracted from the third row to eliminate a_{31}. The final step is to multiply the modified second row by

$$
f_{32}=\frac{a_{32}^{\prime}}{a_{22}^{\prime}}
$$

and subract the result from the third row to eliminate a_{32}^{\prime}.

LU Decomposition with Gauss Elimination

Problen Statement. Derive an $L U$ decomposition based on the Gauss eliminatio performed in Example 9.5.
Solution. In Example 9.5, we solved the matrix

$$
[A]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]
$$

After fcrward elimination, the following upper triangular matrix was obtained:

$$
[U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
$$

The factors employed to obtain the upper triangular matrix can be assembled into a lower triangular matrix. The elements a_{21} and a_{31} were eliminated by using the factors

$$
f_{21}=\frac{0.1}{3}=0.03333333 \quad f_{31}=\frac{0.3}{3}=0.1000000
$$

and the element σ_{32}^{\prime} was eliminated by using the factor

$$
f_{32}=\frac{-0.19}{7.00333} \frac{a^{\prime} 32}{a_{22}}-0.0271300
$$

Thus, the lower triangular matrix is

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]
$$

Consequently, the $L U$ decomposition is

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
$$

```
SuB Decompose \((d, n)\)
    DOFOR \(k=1, n-1\)
        DOFOR \(i=k+1 . n\)
            factor \(=a_{r, k} / a_{k, k}\)
            \(a_{i, k}=\) factor
            DOFOR \(j=k+1, n\)
            \(a_{l_{. j}}=a_{i, j}-\) factor \(\# a_{k, j}\)
            ENO 00
        END 00
    EHD 00
```

END Decompose

This resuli can be verified by performing the multiplication of $[L][U]$ to give

$$
[L][U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.0999999 & -7 & -0.3 \\
0.3 & -0.2 & 9.99996
\end{array}\right]
$$

where the minor discrepancies are due to round-off.

Encontrando ' d ' aplicando la eliminación hacia adelante pero solo sobre el vector ' B '

$$
d_{i}=b_{i}-\sum_{j=1}^{i-1} a_{i j} d_{j} \quad \text { for } i=2,3, \ldots, n
$$

Encontrando ' X ' aplicando la sustitución hacia atrás

$$
\begin{aligned}
& x_{n}=d_{n} / a_{n n} \\
& x_{i}=\frac{d_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}} \quad \text { for } i=n-1, n-2, \ldots, 1
\end{aligned}
$$

The Substitution Steps

Problem Statement. Complete the problem initiated in Example by generating the final solution with forward and back substitution.

Solution. As stated above, the intent of forward substitution is to impose the elimination manipulations, that we had formerly applied to $[A]$, on the right-hand-side vector $\{B \mid$. Recall that the system being solved in Example 9.5 was

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.3 \\
71.4
\end{array}\right\} \quad \kappa x=8
$$

and that the forward-elimination phase of conventional Gauss elimination resulted in

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2^{7} \tag{E10.2.1}\\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
D \\
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

The forward-substitution phase is implemented by applying Eq. (10.7) to our problem,
$\left[\begin{array}{ccc}1 & 0 & L_{0} \\ 0.0333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1\end{array}\right]\left\{\begin{array}{c}P \\ d_{1} \\ d_{2} \\ d_{3}\end{array}\right\}=\left\{\begin{array}{c}7.85 \\ -19.3 \\ 71.4\end{array}\right\}$
or multiplying out the left-hand side,

$$
\begin{aligned}
d_{1} & =7.85 \\
0.0333333 d_{1}+d_{2} & =-19.3 \\
0.1 d_{1}-0.02713 d_{2}+d_{3} & =71.4
\end{aligned}
$$

We can solve the first equation for d_{t},

$$
d_{1}=7.85
$$

which can be substituted into the second equation to solve for

$$
d_{2}=-19.3-0.0333333(7.85)=-19.5617
$$

Both d_{1} and d_{2} can be substituted into the third equation to give

$$
d_{3}=71.4-0.1(7.85)+0.02713(-19.5617)=70.0843
$$

Thus,

$$
|D|=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

which is identical to the right-hand side of Eq. (E10.2.1).

$$
\text { This result can then be substituted into Eq. }(10,4),[U][X)=\{D\} \text {, to give }
$$

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

which can be solved by back substitution (see Example 9.5 for details) for the final solution,

$$
(X)=\left\{\begin{array}{c}
3 \\
-2.5 \\
7.00003
\end{array}\right\}
$$

The following is pseudocode for a subroutine to implement both substitution phases:

SUB substitute (a, n. b: x)
"forward substitution
DOFOR $i=2 . n$
sum $=b_{i}$
OOFOR $j=1, i=1$
sum $=\operatorname{sum}-a_{i . j} * b_{j}$
ENO DO
$b_{i}=$ sum
END 00
back substitution
$x_{n}=b_{n} \int a_{n, n}$
OOFOR $i=n=1,1,-1$
sum $=0$
DOFOR $j=i+1, n$
sum $=\operatorname{sum}+a_{i . j}{ }^{*} \times j$ END 00
$x_{i}=\left(b_{i}=s u m\right) r_{i . i}$
END 00
END Substitute

Sub Ludecomp (a, b, n. tol, x, er) OTM O_{n}. S_{n}
$e r=0$
CALL Decanpose(a, n, tol, o, s. er) If er <> -1 THEN

CALL Substitute(d, o, n, b, x) EMD IF
END Ludecanp
SUB Decompose (a, n, tol, o. s, er) DOFOR $\hat{i}=1, n$

$$
o_{1}=1
$$

$s_{i}=A B S\left(\varepsilon_{1, f}\right)$
DOFOR $j=2$. n
IF $A B S\left(a_{i, j}\right)>s_{j}$ THEN $s_{1}=\operatorname{ABS}\left(a_{i, j}\right)$
END DO
ENO DO
DOFOR $k=1, n-1$
CALL Pivot(a, o, s, n, k)
IF ABS $\left(\partial_{\text {ork }}, k / S_{0(k)}\right)<$ tol THEN
$e r=-1$
PRINT $\tilde{a}_{a(8), k} / S_{\sigma(B)}$
EXIT DO
END IF
OOFOR $i=k+1, n$
factor $=d_{o(i), k} / \partial_{0(1)}$,
$a_{\text {g(I) }}, \lambda=$ factor
DOFOR $j=k+1, n$
$\partial_{a(1), j}=a_{o(i), j}-$ factor $+a_{o(k), j}$ END 00
ENU CO
ENO DO
IF $A B S\left(\partial_{\text {ork }}\right),{ }^{W}\left(S_{\text {ork }}\right)<$ tol THEN
$e r=-1$
PRINT $a_{0(k), k} / S_{\text {o(k) }}$

FIGURE 10.2

Pseudocode for an IU decomposilion algorithm.

END IF
END Decompose
SUB Pivot (る, o, $5, n, k$)

$$
p=k
$$

big $=A B S\left(a_{o n k) . k} / S_{0(k)}\right)$
DOFOR $i j=k+1, n$
dummy $=A B S\left(a_{o r}, 1, k, k / S_{\text {orif }}\right)$
IF dummy > big THEN
big $=$ dummy
$p=i j$
END IF
END 00
dummy $=O_{3}$
$o_{0}=o_{k}$
$o_{\mathrm{k}}=$ dummy
ENO Pivot
SUB Substitute (a, o, n, b, x) OOFOR $i=2$, n

$$
\text { sum }=b_{0(1)}
$$

$$
\text { OOFOR } j=1, i-1
$$

$$
s u m=s u m-a_{q(1) . j} * b_{a(j)}
$$

ENO DO
$b_{011}=$ sum
END DD
$x_{n}=b_{o(m)} / a_{o(n), n}$
OOFOR $i=n-1,1,-1$
sum $=0$
OOFOR $j=i+1, n$
sum $=$ sum $+\Delta_{0[1, j} * x_{3}$
ENO DO
$x_{y}=\left(b_{0(i)}-s u m\right) / a_{0(i)}, i$
ENO 00
END Substitute

Matriz Inversa

$$
[A][A]^{-1}=[A]^{-1}[A]=[I]
$$

The inverse can be computed in a column-by-column fashion by generating solutions with unit vectors as the right-hand-side constants. For example, if the right-hand-side constant has a 1 in the first position and zeros elsewhere,

$$
\{b\}=\left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right\}
$$

the resulting solution will be the first column of the matrix inverse. Similarly, if a unit vector with a 1 at the second row is used

$$
\{b\}=\left\{\begin{array}{l}
0 \\
1 \\
0
\end{array}\right\}
$$

the result will be the second column of the matrix inverse.
The best way to implement such a calculation is with the $L U$ decomposition algorithm described at the beginning of this chapter. Recall that one of the great strengths of $L U$ decomposition is that it provides a very efficient means to evaluate multiple right-handside vectors. Thus, it is ideal for evaluating the mulkiple unit vectors needed to compute the inverse.

Marrix Inversion
Problem Statement. Employ $L U$ decomposition to determine the matrix inverse for the system from Example 10.2.

$$
[A]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]
$$

Recall that the decomposition resulted in the following lower and upper triangular matrices:

$$
[U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right] \quad[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]
$$

Solution. The first column of the matrix inverse can be determined by performing the forward-substitution solution procedure with a unit vector (with 1 in the first row) as the -right-hand-side vector. Thus, Eq. (10.8), the lower-triangular system, can be set up as

$$
\left[\begin{array}{cc}
1 & 0 \\
0.0333333 & 1 \\
0.100000 & -0.0271300
\end{array}\right.
$$

$$
\left.\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right\}
$$

and solved with forward substitution for $\{D\}^{T}=\left[\begin{array}{lll}11 & -0.03333 & -0.10091\end{array}\right.$. This vector can then be used as the right-hand side of Eq. (10.3),

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
-0.03333 \\
-0.1009
\end{array}\right\}
$$

which can be solved by back substitution for $(X)^{T}=\left[\begin{array}{llll}0.33249 & -0.00518 & -0.01008\end{array}\right]$, which is the first column of the matrix,

$$
[A]^{-1}=\left[\begin{array}{ccc}
0.33249 & 0 & 0 \\
-0.00518 & 0 & 0 \\
-0.01008 & 0 & 0
\end{array}\right]
$$

To determine the second column, Eq. (10.8) is formulated as

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
1 \\
0
\end{array}\right\}
$$

This can be solved for (D), and the results are used with Eq. (10.3) to determine $(X)^{T}=$ [0.004944 0.1429030 .00271], which is the second column of the matrix,

$$
[A]^{-1}=\left[\begin{array}{rll}
0.33249 & 0.004944 & 0 \\
-0.00518 & 0.142903 & 0 \\
-0.01008 & 0.00271 & 0
\end{array}\right]
$$

Finally, the forward- and back-substitution procedures can be implemented with $(B)^{\top}=$ $\left.1 \begin{array}{lll}0 & 0 & 1\end{array}\right]$ to solve for $\{X\}^{T}=\left[\begin{array}{lll}0.006798 & 0.004183 & 0.09988\end{array}\right]$, which is the final column of the matrix,

$$
[A]^{-1}=\left[\begin{array}{rcc}
0.33249 & 0.004944 & 0.006798 \\
-0.00518 & 0.142903 & 0.004183 \\
-0.01008 & 0.00271 & 0.09988
\end{array}\right]
$$

The validity of this result can be checked by verifying that $[A][A]^{-1}=[I]$.

Homework

10.2 (a) Use naive Gauss elimination to decompose the following system according to the description in Sec. 10.2.

$$
\begin{aligned}
10 x_{1}+2 x_{2}-x_{3} & =27 \\
-3 x_{1}-6 x_{2}+2 x_{3} & =-61.5 \\
x_{1}+x_{2}+5 x_{3} & =-21.5
\end{aligned}
$$

Then, multiply the resulting $[L]$ and $[U]$ matrices to determine that $[A]$ is produced. (b) Use $L U$ decomposition to solve the system. Show all the steps in the computation. (c) Also solve the system for an alternative right-hand-side vector: $\{B\}^{T}=\left(\begin{array}{lll}12 & 18 & -6\end{array}\right]$.
10.3
(a) Solve the following system of equations by $L U$ decomposition without pivoting

$$
\begin{aligned}
8 x_{1}+4 x_{2}-x_{3} & =11 \\
-2 x_{1}+5 x_{2}+x_{3} & =4 \\
2 x_{1}-x_{2}+6 x_{3} & =7
\end{aligned}
$$

(b) Determine the matrix inverse. Check your results by verifying that $[A][A]^{-1}=[I]$.
10.4 Solve the following system of equations using $L U$ decomposition with partial pivoting:

$$
\begin{aligned}
2 x_{1}-6 x_{2}-x_{3} & =-38 \\
-3 x_{1}-x_{2}+7 x_{3} & =-34 \\
-8 x_{1}+x_{2}-2 x_{3} & =-20
\end{aligned}
$$

