Header image  
Martin Mendez  

 

line decor
 
 
 
 
 

 
 
Introduction to Pattern Recognition

 

For simulations, please click here

CONTENT

UNIDAD 1:          INTRODUCTION (slides)

1.1Frequency distributions.
1.2 Mean, Median, Mode and other statistical moments
1.3 Standard deviation and similar measures
1.4 Skweness and Kurtosis
1.5 Basics on probability
1.6 Continuos and discrete random variables
1.7 Random vectors

 

UNIDAD 2:          BAYESIAN DECISION THEORY AND SOME TECHNIQUES FOR CLASSIFICATION(slides)

 2.1 Discriminant functions and decision surfaces
2.2 Bayesian classification for Gaussian distributions
2.3 Maximum-Likelihood estimation
2.4 Bayesian estimation
2.4 Expectation-Maximization
2.5 Density estimation
2.6 Parzen windows
2.7 K-nearest neighbor classifier
2.8 Fuzzy classification
2.9 Bayesian networks
2.10 Hidden Markov models

 

UNIDAD 3:         LINEAR CLASSIFIERS (slides)

3.1 Linear discriminant
3.2 The perceptron
3.3 Support Vector Machine

 

UNIDAD 4:        PRACTICAL TIPS (slides)

4.1 Feature selection
4.2 Reduction of dimensionality
4.3 Data tranformation

 

BIBLIOGRAPHY

1. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification. 2ed, Ed. Wiley-Interscience, 2001.

2. Theodoridis S, Koutroumbas K, Pattern Recognition. 4ed, Ed. AP, 2009.

3. Christopher m. Bishop, Pattern Recognition and Machine Learning. Ed. Springer, 2006.

 

 

 

 

 
 
 

 

First Exam
September - 03, 2012.

Second Exam
September - 28, 2012.

Third Exam

October - 22- 2012

Fourth

November -16 - 2012

Project

December -14- 2012